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Abstract—Border complexity of polynomials plays an inte-
gral role in GCT (Geometric Complexity Theory) approach to
P versus NP. It tries to formalize the notion of ‘approximating
a polynomial’ via limits (Bürgisser FOCS’01). This raises the
open question whether border of VP is same as VP or not;
as the approximation involves exponential precision, which
may not be efficiently simulable. Recently (Kumar ToCT’20)
proved the universal power of the border of top-fanin-2 depth-3
circuits. Here we answer some of the related open questions. We
show that the border of bounded top-fanin-k depth-3 circuits,
for constant k, is relatively easy– it can be computed by a
polynomial size algebraic branching program (ABP). There
were hardly any de-bordering results known for prominent
models before our result.

Moreover, we give the first quasipolynomial-time black-
box identity test for the same. Prior best was in PSPACE
(Forbes,Shpilka STOC’18). Also, with more technical work,
we extend our results to depth-4. Our de-bordering paradigm
is a multi-step process; in short we call it DiDIL –divide, derive,
induct, with limit. It ‘almost’ reduces border top-fanin-k depth-
3 circuits to special cases of read-once oblivious algebraic
branching programs (ROABPs) in any-order.
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I. INTRODUCTION

Algebraic circuit is a natural and non-uniform model of
polynomial computation, which comprises the vast study
of algebraic complexity [1]. We say that a polynomial
f ∈ F[x1, . . . , xn], over a field F is computable by a circuit
of size s and depth d if there exists a directed acyclic graphs
of size s (nodes + edges) and depth d such that its leaf nodes
are labelled by variables or field constants, internal nodes
are labelled with + and ×, and the polynomial computed
at the root is f . Further, if the output of a gate is never
re-used then it is a Formula. Any formula can be converted
into a layered graph called Algebraic Branching Program
(ABP). Various complexity measures can be defined on the
computational model to classify polynomials in different
complexity classes. For eg. VP (respec. VBP, respec. VF) is
the class of polynomials of polynomial degree, computable
by polynomial-sized circuits (respec. ABPs, respec. formu-

las). Finally, VNP is the class of polynomials, each of which
can be expressed as an exponential-sum of projection of a
VP circuit family. For more details, see [2], [3].

The problem of separating algebraic complexity classes
has been a central theme of this study. Valiant [1] conjec-
tured that VBP 6= VNP, and even a stronger VP 6= VNP, as
an algebraic analog of P vs. NP problem. Over the years, an
impressive progress has been made towards resolving this,
however, the existing tools have not been able to resolve
this conclusively. In this light, Mulmuley and Sohoni [4]
introduced Geometric Complexity Theory (GCT) program,
where they studied the border (or approximative) complex-
ity, with the aim of approaching Valiant’s conjecture and
strengthening it to: VNP 6⊆ VBP, i.e. (padded) permanent
does not lie in the orbit closure of ‘small’ determinants. This
notion was already studied in the context of designing matrix
multiplication algorithms [5], [6], [7]. The hope, in the GCT
program, was to use algebraic geometry and representation
theory, and possibly settle the question once and for all.
This also gave a natural reason to understand the relationship
between VP and VP (or VBP and VBP).

Outside VP vs. VNP implication, GCT has deep con-
nections with computational invariant theory [8], [9], [10],
algebraic natural proofs [11], [12], [13], lower bounds [14],
[15], optimization [16], [17] and many more. We refer to [9],
[18] for expository references.

The simplest notion of the approximative closure comes
from the following definition [19]: a polynomial f(x) ∈
F[x1, . . . , xn] is approximated by g(x, ε) ∈ F(ε)[x] if there
exists a Q(x, ε) ∈ F[ε][x] such that g = f + εQ. We
can also think analytically (in F = R Euclidean topology)
that limε→0 g = f . If g belongs to a circuit class C (over
F(ε), i.e. any arbitrary ε-power is allowed as ’cost-free’
constants), then we say that f ∈ C, the approximative closure
of C. Further, one could also think of the closure as Zariski
closure, i.e. taking the closure of the set of polynomials (con-
sidered as points) of C: Let I be the smallest (annihilating)
ideal whose zeros cover {coefficient-vector of g | g ∈ C};
then put in C each polynomial f with coefficient-vector be-
ing a zero of I. Interestingly, all these notions are equivalent
over the algebraically closed field C [20, §2.C].

The size of the circuit computing g defines the approxima-
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tive (or border) complexity of f , denoted size(f); evidently,
size(f) ≤ size(f). Due to the possible 1/εM terms in the
circuit computing g, evaluating it at ε = 0 may not be neces-
sarily valid (though limit exists). Hence, given f ∈ C, does
not immediately reveal anything about the exact complexity
of f . Since g(x, ε) = f(x)+ε·Q(x, ε), we could extract the
coefficient of ε0 from g using standard interpolation trick, by
setting random ε-values from F. However, the trivial bound
on the circuit size of f would depend on the degree M of
ε, which could provably be exponential in the size of the
circuit computing g, i.e. size(f) ≤ size(f) ≤ exp(size(f))
[19, Thm. 5.7].

A. De-bordering: The upper bound results

The major focus of this paper is to address the power
of approximation in the restricted circuit classes. Given a
polynomial f ∈ C, for an interesting class C, we want to
upper bound the exact complexity of f (we call it ‘de-
bordering’). If C = C, then C is said to be closed under
approximation: Eg. 1) ΣΠ, the sparse polynomials (with
complexity measure being sparsity), 2) Monotone ABPs
[21], and 3) ROABP (read-once ABP) respec. ARO (any-
order ROABP), with measure being the width. ARO is an
ABP with a natural restriction on the use of variables per
layer; see Definition 3 and Lemma 4.

Why care about upper bounds? One of the fundamental
questions in the GCT is whether VP ?

= VP [18], [22]. Confir-
mation or refutation of this has multiple consequences, both
in the algebraic complexity and at the frontier of algebraic
geometry. If VP = VP, then any proof of VP 6= VNP will
in fact also show that VNP 6⊆ VP, as conjectured in [9];
however a refutation would imply that any realistic approach
to the VP vs. VNP conjecture would even have to separate
VNP from the families in VP\VP, requiring a far better
understanding than the current state of the art.

The other significance of the upper bound result arises
from the flip [23], [9] whose basic idea in a nutshell is to
understand the theory of upper bounds first, and then use
it to prove lower bounds later. Taking this further to the
realm of algorithms: showing de-bordering results, for even
restricted classes (eg. depth-3, small-width ABPs), could
have potential identity testing implications; see Section I-B.

De-bordering results in GCT are in a very nascent stage;
for e.g., the boundary of 3×3 determinants was only recently
understood [24]. Note that here both the number of variables
n and the degree d are constant. In this work, however, we
target polynomial families with both n and d unbounded.
So getting exact results about such border models is highly
nontrivial considering the current state of the art.

De-bordering small-width ABPs. The exponential degree
dependence of ε [19], [25] suggests us to look for separation
of restricted complexity classes or try to upper bound them
by some other means. In [26], the authors showed that
VBP2 ( VBP2 = VF ; here VBP2 denotes the class

of polynomials computed by width-2 ABP. Surprisingly,
we also know that VBP2 ( VF = VBP3 [27], [28].
Very recently, polynomial gap between ABPs and border-
ABPs, in the trace model, for noncommutative and also for
commutative monotone settings (along with VQP 6= VNP)
have also been established [21].

Quest for de-bordering depth-3 circuits. Outside such
ABP results and depth-2 circuits, we understand very little
about the border of other important models. Thus, it is
natural to ask the same for depth-3 circuits, plausibly starting
with depth-3 diagonal circuits (Σ∧Σ), i.e. polynomials of
the form

∑
i∈[s] ci · `di , where `i are linear polynomials.

Interestingly, the relation between waring rank (minimum
s to compute f ) and border-waring rank (minimum s, to
approximate f ) has been studied in mathematics since ages
[29], [30], [31], [32], yet it is not clear whether the measures
are polynomially related or not. However, we point out that
Σ∧Σ has a small ARO; this follows from the fact that Σ∧Σ
has small ARO by duality trick [33], and ARO is closed
under approximation [34], [35]; see Lemma 5.

This pushes us further to study depth-3 circuits Σ[k]Π[d]Σ;
these circuits compute polynomials of the form f =∑
i∈[k]

∏
j∈[d] `ij where `ij are linear polynomials. This

model with bounded fanin has been a source of great interest
for derandomization [36], [37], [38], [39], [40]. In a recent
twist, Kumar [41] showed that border depth-3 fanin-2 cir-
cuits are ‘universal’; i.e. Σ[2]Π[D]Σ over C can approximate
any homogeneous d-degree, n-variate polynomial; though
his expression requires an exceedingly large D = exp(n, d).

Our upper bound results. The universality result of bor-
der depth-3 fanin-2 circuits makes it imperative to study
Σ[2]Π[d]Σ, for d = poly(n) and understand its computa-
tional power. To start with, are polynomials in this class even
‘explicit’ (i.e. the coefficients are efficiently computable)? If
yes, is Σ[2]Π[d]Σ ⊆ VNP? (See [22], [42] for more general
questions in the same spirit.) To our surprise, we show that
the class is very explicit; in fact every polynomial in this
class has a small ABP. The proof uses analytic approach and
‘reduces’ the Π-gate to ∧-gate. We remark that it does not
reveal the polynomial dependence on the ε-degree. However,
this positive result could be thought as a baby step towards
VP = VP. We assume char(F) = 0, or large enough.

Theorem 1 (De-bordering constant top-fanin depth-3 circuits):
For any constant k, Σ[k]ΠΣ ⊆ VBP, i.e. any polynomial in
the border of constant top-fanin size-s depth-3 circuits, can
also be computed by a poly(s)-size algebraic branching
program (ABP).
Remarks. 1. When k = 1, it is easy to show that ΠΣ = ΠΣ
[26, Prop. A.12] (see Lemma 6).

2. The size of the ABP turns out to be sexp(k). It is
an interesting open question whether f ∈ Σ[k]ΠΣ has a
subexponential ABP when k = Θ(log s).

3. Σ[k]ΠΣ is the orbit closure of k-sparse polynomials



[43, Thm. 1.31]. Separating the orbit and its closure of
certain classes is the key difficulty in GCT. Theorem 1 is
one of the first such results to demystify orbit closures (of
constant-sparse polynomials).

Extending to depth-4. Once we have dealt with depth-3
circuits, it is natural to ask the same for constant top-fanin
depth-4 circuits. Polynomials computed by Σ[k]ΠΣΠ[δ] cir-
cuits are of the form f =

∑
i∈[k]

∏
j gij where deg(gij) ≤ δ.

Unfortunately, our technique cannot be generalised to this
model, primarily due to the inability to de-border Σ∧ΣΠ[δ].
However, when the bottom Π is replaced by ∧, we can
show Σ[k]ΠΣ∧ ⊆ VBP.

B. Derandomizing the border: The blackbox PITs

Polynomial Identity Testing (PIT) is one of the funda-
mental decision problems in complexity theory. The Poly-
nomial Identity Lemma [44], [45], [46], [47] gives an
efficient randomized algorithm to test the zeroness of a
given polynomial, even in the blackbox settings (known as
Blackbox PIT), where we are not allowed to see the internal
structure of the model (unlike the ’whitebox’ setting), but
evaluations at points are allowed. It is still an open problem
to derandomize blackbox PIT. Designing a deterministic
blackbox PIT algorithm for a circuit class is equivalent to
finding a set of points such that for every nonzero circuit,
the set contains a point where it evaluates to a nonzero value
[48, Sec. 3.2]. Such a set is called hitting set.

A trivial O(dn)-size explicit hitting set for a class of
degree d n-variate polynomials can be obtained using
the Polynomial Identity Lemma. Heintz and Schnorr [49]
showed that poly(s, n, d) size hitting setexists for d-degree,
n-variate polynomials computed (as well as approximated)
by circuits of size s. However, the real challenge is to
efficiently obtain such an explicit set.

Constructing small size explicit hitting set for VP is a
long standing open problem in algebraic complexity, with
numerous applications in graph theory [50], [51], factoring
[52], [53], cryptography [54], and hardness vs randomness
results [49], [55], [56], [57], [58], [59]. Moreover, a long
line of depth reduction results [60], [61], [62], [63], [64] and
the bootstrapping phenomenon [65], [66], [67] has justified
the interest in hitting set construction for restricted classes;
e.g. depth 3 [36], [37], [39], [40], depth 4 [68], [69], [70],
[71], [72], ROABPs [73], [74], [68] and log-variate depth-3
diagonal circuits [75]. For exposition, see [2], [76], [77].

PIT in the border. In this paper we address the question
of constructing hitting set for restrictive border circuits. H
is a hitting set for a class C, if g(x, ε) ∈ CF(ε), approximates
a non-zero polynomial f(x) ∈ C, then ∃a ∈ H such that
g(a, ε) 6∈ ε · F[ε], i.e. f(a) 6= 0. Note that, as H will also
‘hit’ polynomials of class C, construction of hitting set for
the border classes (we call it ‘border PIT’) is a natural and
possibly a different avenue to derandomize PIT. Here, we

emphasize that a ∈ Fn such that g(a, ε) 6= 0, may not hit
the limit polynomial f since g(a, ε) might still lie in ε ·F[ε];
because f could have really high complexity compared to
g. Intrinsically, this property makes it harder to construct an
explicit hitting set for VP.

We also remark that there is no ‘whitebox’ setting in
the border and thus we cannot really talk about ‘t-time
algorithm’; rather we would only be using the term ‘t-
time hitting set’, since the given circuit after evaluating on
a ∈ Fn, may require arbitrarily high-precision in F(ε).

Prior known border PITs. Mulmuley [18] asked the ques-
tion of constructing an efficient hitting set for VP. Forbes
and Shpilka [78] gave a PSPACE algorithm over the field
C. In [79], it was extended to any field. A very few better
hitting set constructions are known for the restricted border
classes, eg. poly-time hitting set for ΠΣ = ΠΣ [80], [81],
quasi-poly hitting set for (resp. ) Σ∧Σ ⊆ ARO ⊆ ROABP
[68], [73], [74] and poly-time hitting set for the border of a
restricted sum of log-variate ROABPs [82].

Why care about border PIT? PIT for VP has a lot
of applications in the context of borderline geometry and
computational complexity, as observed by Mulmuley [18].
For eg. Noether’s Normalization Lemma (NNL); it is a
fundamental result in algebraic geometry where the com-
putational problem of constructing explicit normalization
map reduces to constructing small size hitting set of VP
[18], [8]. Close connection between certain formulation
of derandomization of NNL, and the problem of showing
explicit circuit lower bounds is also known [18], [83].

The second motivation comes from the hope to find an
explicit ‘robust’ hitting set for VP [78]; this is a hitting set
H such that after an adequate normalization, there will be
a point in H on which f evaluates to (say) 1. This notion
overcomes the discrepancy between a hitting set for VP and
a hitting set for VP [78], [43]. We know that small robust
hitting set exists [84], but [78] gave an explicit PSPACE
construction. It is not at all clear whether the efficient hitting
sets known for restricted depth-3 circuits are robust or not.

Our border PIT results. We continue our study on
Σ[k]Π[d]Σ and ask for a better than PSPACE constructible
hitting set. Already a polynomial-time hitting set is known
for Σ[k]Π[d]Σ [85], [39], [40]. But, the border class seems to
be more powerful, and the known hitting sets seem to fail.
However, using our structural understanding and the analytic
DiDIL technique, we can quasi-derandomize the class.

Theorem 2 (Quasi-derandomizing depth-3): There exists
an explicit sO(log log s)-time hitting set for Σ[k]ΠΣ-circuits
of size s and constant k.
Remarks. 1. For k = 1, as ΠΣ = ΠΣ, there is an explicit
polynomial-time hitting set.

2. Our technique necessarily blows up the size to
sexp(k)·log log s. Therefore, it would be interesting to design a



subexponential time algorithm when k = Θ(log s); or poly-
time for k = O(1).

3. We can not directly use the de-bordering result of
Theorem 1 and try to find efficient hitting set, as we do
not know explicit good hitting set for general ABPs.

4. One can extend this technique to construct quasi-
polynomial time hitting set for depth-4 classes: Σ[k]ΠΣ∧
and Σ[k]ΠΣΠ[δ], when k and δ are constants.

The log-variate regime. Recently, low-variate polynomi-
als, even in highly restricted models, have gained a lot
of clout for their general implications in the context of
derandomization and hardness results [65], [66], [67], [59].
A slightly non-trivial hitting set for trivariate ΣΠΣ∧-circuits
[65] would in fact imply quasi-efficient PIT for general
circuits (optimized to poly-time in [67] with a hardness
hypothesis). This motivation has pushed researchers to de-
sign efficient PITs in the log-variate regime. In [75], the
authors showed a poly(s)-time blackbox identity test for
n = O(log s) variate size-s circuits that have poly(s)-
dimensional partial derivative space; eg. log-variate depth-
3 diagonal circuits. Very recently, [82] gave the first
poly(s)-time blackbox PIT for sum of constant-many, size-
s, O(log s)-variate constant-width ROABPs (and its border).

We remark that non-trivial border-PIT in the low-variate
bootstraps to non-trivial PIT for VP as well [65], [67].
Motivated thus, we try to derandomize log-variate Σ[k]ΠΣ-
circuits. Unfortunately, direct application of Theorem 2
fails to give a polynomial-time PIT. Surprisingly, adapting
techniques from [75] to extend the existing result, combined
with our DiDIL technique, we prove the following.

Theorem 3 (Derandomizing log-variate depth-3): There
exists an explicit poly(s)-time hitting set for n = O(log s)

variate, size-s, Σ[k]ΠΣ circuits, for constant k.

C. Limitation of standard techniques

In this section, we briefly discuss about the standard
techniques for both the upper bounds and PITs, in the border
sense, and point out why they fail to yield our results.

Why known upper bound techniques fail? One of
the most obvious way to de-border restricted classes is to
essentially show a polynomial ε-degree bound and inter-
polate. In general, the bound is known to be exponential
[25, Thm. 5.7] which crucially uses [86, Prop. 1]. This
proposition essentially shows the existence of an irreducible
curve C whose degree is bounded in terms of the degree
of the affine variety, that we are interested in. The degree
is in general exponentially upper bounded by the size [87,
Thm. 8.48]. Unless and until, one improves these bounds for
varieties induced by specific models (which seems hard), one
should not expect to improve the ε-degree bound, and thus
interpolation trick seems useless.

As mentioned before, Σ∧Σ-circuits could be de-bordered
using the duality trick [33] (Theorem 7) to make it an ARO

and finally using Nisan’s characterization giving ARO =
ARO [34], [35], [88] (Theorem 4). But this trick is directly
inapplicable to our models with the Π-gate, due to large war-
ing rank & ROABP-width, as one could expect 2d-blowup in
the top fanin while converting Π-gate to ∧. We also remark
that the duality trick was made field independent in [48,
Lemma 8.6.4]. In fact, very recently, [89, Theorem 4.3] gave
an improved duality trick with no size blowup, independent
of degree and number of variables.

Moreover, all the non-trivial current upper bound meth-
ods, for limit, seem to need an auxiliary linear space, which
even for Σ[2]ΠΣ is not clear, due to the possibility of
heavy cancellation of ε-powers. To elaborate, one of the
major bottleneck is that individually limε→0 Ti, for i ∈ [2]
may not exist, however, limε→0(T1 + T2) does exist, where
Ti ∈ ΠΣ (over F(ε)[x]). For eg. T1 := ε−1(x + ε2y)y
and T2 := −ε−1(y + εx)x. No generic tool is available to
‘capture’ such cancellations, and may even suggest a non-
linear algebraic approach to tackle the problem.

Furthermore, [90] explicitly classified certain factor poly-
nomials to solve non-border Σ[2]ΠΣ∧ PIT. This factoring-
based idea seems to fail miserably when we study factor-
ing mod 〈εM 〉; in that case, we get non-unique, usually
exponentially-many, factorizations. For eg. x2 ≡ (x − a ·
εM/2)·(x+a·εM/2) mod 〈εM 〉; for all a ∈ F. In this case,
there are, in fact, infinitely many factorizations. Moreover,
limε→0 1/εM ·

(
x2 − (x− a · εM/2) · (x+ a · εM/2)

)
= a2.

Therefore, infinitely many factorizations may give infinitely
many limits. To top it all, Kumar’s result [41] hinted a
possible hardness of border-depth-3 (top-fanin-2). In that
sense, ours is a very non-linear algebraic proof for restricted
models which successfully opens up a possibility of finding
non-representation-theoretic, and elementary, upper bounds.

Why known PIT techniques fail? Once we understand
Σ[k]ΠΣ, it is natural to look for efficient derandomization.
However, we do not know efficient PIT for ABPs! Further, in
a nutshell—1) limited (almost non-existent) understanding
of linear/algebraic dependence under limit, 2) exponential
upper bound on ε, and 3) not-good-enough understanding
of restricted border classes make it really hard to come up
with an efficient hitting set. We elaborate these points below.

[36] gave a rank-based approach to design the first
quasipolynomial time algorithm for Σ[k]ΠΣ. A series of
works [91], [85], [39], [92] finally gave a sO(k)-time al-
gorithm for the same. Their techniques depend on either
generalizing Chinese remaindering (CR) via ideal-matching
or certifying paths, or via efficient variable-reduction, to
obtain a good enough rank-bound on the multiplication
(ΠΣ) terms. Most of these approaches required a linear
space, but possibility of exponential ε-powers and non-trivial
cancellations make these methods fail miserably in the limit.
Similar obstructions also hold for [43], [93], [94] which
give efficient hitting sets for the orbit of sparse polynomials



(which is in fact dense in ΣΠΣ). In particular, [43] gave
PIT for the orbits of variable disjoint monomials (see [43,
Defn. 1.29]), under the affine group, but not the closure of
it. Thus, they do not even give a subexp. PIT for Σ[2]ΠΣ.

Recently, [95] gave a sδ
k

-time PIT, for non-SG
(Sylvester–Gallai) Σ[k]ΠΣΠ[δ] circuits, by constructing ex-
plicit variety evasive subspace families; but to apply this
idea to border PIT, one has to devise a radical-ideal based
PIT idea. Currently, this does not work in the border, as
ε mod 〈εM 〉 has an exponentially high nilpotency. Since
radical〈εM 〉 = 〈ε〉, it ’kills’ the necessary information unless
we can show a polynomial upper bound on M .

Finally, [40] came up with faithful map by using Jacobian
+ certifying path technique, which is more about algebraic
rank rather than linear-rank. However, it is not at all clear
how it behaves wrt limε→0. For eg. f1 = x1 + εM · x2, and
f2 = x1, where M is arbitrary large. Note that the under-
lying Jacobian J(f1, f2) = εM is nonzero; but it flips to
zero in the limit. This makes the whole Jacobian machinery
collapse in the border setting; as it cannot possibly give a
variable reduction for the border model. (Eg. one needs to
keep both x1 and x2 above.)

Very recently, [72] gave a quasipolynomial time hitting
set for exact Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ] circuits, when k and
δ are constant. This result is dependent on the Jacobian
technique which fails under taking limit, as mentioned
above. However, a poly-time whitebox PIT for Σ[k]ΠΣ∧
circuits was shown using DiDI-technique (Divide, Derive
and Induct). This cannot be directly used because there was
no ε (i.e. without limit) and Σ[k]ΠΣ∧ has only blackbox
access. Further, Theorem 1 gives an ABP, where DiDI-
technique cannot be directly applied. Therefore, our DiDIL-
technique can be thought of as a strict generalization of the
DiDI-technique, first introduced in [72].

D. Proof overview

In this section, we sketch the proof of Theorems 1-3.
The proofs are recursive and analytic. They use logarithmic
derivative, and its power-series expansion; we call the uni-
fying technique as DiDIL (Di=Divide, D=Derive, I=Induct,
L=Limit). In both the cases, we essentially reduce to the
well-known ‘wedge’ models (as fractions, with unbounded
top-fanin) and then ‘interpolate’ it (for Theorem 1) or deduce
directly about its nonzeroness (Theorem 2).

The analytic tool that we use, appears in algebra (&
complexity theory) through the ring of formal power series
R[[x1, . . . , xn]] (in short R[[x]]), see [96], [53]. One of the
advantages of the ring R[[x]] emerges from the following
inverse identity: (1 − x1)−1 =

∑
i≥0 x

i
1, which does

not make sense in R[x], but is available now. Lastly, the
logarithmic derivative operator dlog z(f) = (∂zf)/f plays
a very crucial role in ‘linearizing‘ the product gate, since
dlogy(f ·g) = ∂y(fg)/(fg) = (f ·∂yg + g ·∂yf)/(fg) =

dlogy(f)+dlogy(g). Essentially, this operator enables us to
use power-series expansion and converts the

∏
-gate to ∧.

Moreover, we will be working with the division operator
(eg. over R(ε, z), over certain ring R). The divisions do
not come “free”— they require ‘invertibility’ wrt z (and ε)
throughout (again landing us in R[[ε, z]], see Lem. 8). We
define the class C/D := {f/g | f ∈ C, 0 6= g ∈ D}, for
circuit classes C,D, (similarly C ·D denotes the class taking
respective products).

Proof idea of Theorem 1: De-bordering Σ[k]ΠΣ. Consider
a polynomial f ∈ F[x] where x = x1, . . . , xn, such that f ∈
Σ[k]Π[d]Σ of size s, i.e. g = f+ε·S such that sizeF(ε)(g) ≤ s
(as a Σ[k]ΠΣ-circuit), S ∈ F[ε,x]. We want to understand
the complexity of f .
k = 1 case. [26, Prop. A.12] showed that f is exactly

computable by ΠΣ of size s i.e., ΠΣ = ΠΣ. Unfortunately,
due to possible heavy cancellation among linear terms of
Σ[k]ΠΣ, the idea directly fails for all k > 1.
k = 2 case (almost a detailed analysis). Our remaining

focus would be to sketch the k = 2 proof, which would
give a fair idea about generalizing the same to general k.
Recall from the definition, g := T1 + T2 = f + ε · S where
T1, T2 are multiplication terms (ΠΣ-circuits over F(ε)[x]).
The sum gate makes it hard to give any relevant information
for de-bordering. However, if we can somehow reduce it to
k = 1 case carefully, it can give some structural information
to upper bound the size of circuit computing f . This is where
the DiDIL technique comes into picture.

First we apply a homomorphism map Φ : F(ε)[x] →
F(ε)[x, z] that sends xi 7→ z · xi + αi. One can think of
αi being ‘random’ elements from F; essentially it suffices
to ensure that Φ(Ti) is invertible mod zd. This makes z
the “degree counter” (as it helps track the degree of the
polynomial and interpolate in the later stage). Moreover, Φ
does not increase the complexity of f (over F(z)[x])), since
substituting random z = a ∈ F and then shifting and scaling
it back gives the original f . Thus, all our efforts will be
towards finding limε→0 Φ(g) = Φ(f), over F(z)[x], and
thus giving the size upper bound of f .

Divide and Derive. Let, R := F[z]/〈zd〉, where deg(f) <
d. Let a1 := valε(Φ(T1)) and similarly a2 with respect to
Φ(T2); here valε(·) denotes the highest power of ε dividing
it. Let Φ(Ti) =: εai · T̃i, for i ∈ [2]. Wlog also assume that
v2 := valz(T̃2) ≤ valz(T̃1) =: v1, else we can rearrange.
For this particular case, v1 = v2 = 0; but we keep v2 for
the broader picture since the division by min valuation will
be crucial for the general k case. Now, divide both side by
T̃2 and take partial derivative with respect to z, to get:

Φ(f)/T̃2 + ε · Φ(S)/T̃2 = εa2 + Φ(T1)/T̃2

=⇒ ∂z

(
Φ(f)/T̃2

)
+ ε · ∂z

(
Φ(S)/T̃2

)
= ∂z

(
Φ(T1)/T̃2

)
=: g1 .

(1)

First we argue that Equation 1 is well-defined over R′(x, ε),



where R′ := F[z]/〈zd−v2−1〉. Think of this as going from
the given relation Φ(T1) + Φ(T2) = Φ(f) + εΦ(S), which
holds mod zd, to Equation 1 which holds mod zd−v2−1;
the loss of precision is due to division by zv2 and then
one-time differentiation. Division by the minimum valuation
helps to land us in the formal power series ring (Theorem 8).
Formally, we write g1 as: valz(Φ(T1)/T̃2) ≥ 0 =⇒
Φ(T1)/T̃2 ∈ F(x, ε)[[z]] =⇒ g1 ∈ F(x, ε)[[z]].

Since, valz(T̃i) = valz(Φ(Ti)), for i ∈ [2], it follows
that valz(Φ(T1) + Φ(T2)) ≥ v2. Therefore, valz(Φ(f) + ε ·
Φ(S)) ≥ v2. Setting ε = 0, implies valz(Φ(f)) ≥ v2 as
well, i.e. Φ(f)/T̃2 ∈ F(x, ε)[[z]] (by Theorem 8). This also
implies the same for Φ(S)/T̃2, establishing the fact that both
the LHS and RHS of Equation 1 are well-defined.

Moreover, the maximum ε-power was extracted from T2,
t2 := limε→0 T̃2 exists. Therefore, limε→0(Φ(f)/T̃2) =
Φ(f)/t2 ∈ F(x, z). Thus, f1 := ∂z(Φ(f)/t2) ∈ F(x, )[[z]].
This establishes that g1 approximates f1 correctly, over
R′(x). Essentially, the ε-definition of border is such that
it allows us valz-based divide, derive and take limit (wrt ε).

Logarithmic derivative strikes. Though it seems to
reduce the fanin to 1, we have completely disfig-
ured the model by introducing a division gate. This
is exactly where logarithmic derivative (aka dlog) en-
ters with bunch of helpful properties. In particular,
∂z

(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
=

Φ(T1)/T̃2 ·
(

dlog(Φ(T1))− dlog(T̃2)
)

.
Note that the dlog operator distributes the product gate

into summation giving dlog(ΠΣ) =
∑

dlog(Σ), where Σ
denotes linear polynomials and we observe that dlog(Σ) =
Σ/Σ ∈ Σ∧Σ, the depth-3 powering circuits, over R′(ε,x).
The idea is to expand 1/`, where ` is a linear polynomial,
as sum of powers of linear terms using the inverse identity:
1/(1− a · z) ≡ 1 + a · z + · · ·+ ad−v2−2 · zd−v2−2 mod
zd−v2−1.

We can assume each ` is invertible because of the choice
of αi’s. Since Σ∧Σ is ’closed’ under taking product and ad-
dition, we obtain a final Σ∧Σ circuit for dlog

(
Φ(T1)/T̃2

)
.

Therefore, ∂z
(

Φ(T1)/T̃2

)
is actually in a bloated class–

(ΠΣ/ΠΣ) ·(Σ∧Σ) over R′(ε,x); they compute elements of
the form (A/B) ·C where A,B ∈ ΠΣ while C ∈ Σ∧Σ. In
particular, we get that g1 ∈ (ΠΣ/ΠΣ) ·Σ∧Σ, over R′(ε,x).

Limit: The ‘L’ of DiDIL. The appealing thing about this
bloated class (ΠΣ/ΠΣ) (Σ∧Σ) is that it can be easily de-
bordered using known results mainly because 1) ΠΣ = ΠΣ,
2) Σ∧Σ ⊆ ARO, using duality trick and Nisan’ charac-
terization (Theorem 4) and 3) de-bordering, for a product
gate, is distributive (Theorem 9). Thus, f1 = limε→0 g1 ∈
(ΠΣ/ΠΣ) (Σ∧Σ) ⊆ (ΠΣ/ΠΣ) · (ARO) ⊆ ABP/ABP.

Interpolate. We will now use the f1 = ∂z(Φ(f)/t2)
circuit (ratio of ABPs) to make our upper bound claim
on Φ(f). At the core, the idea of the interpolation is very

primal: to ‘find’ a polynomial g(x), it suffices to know g′(x)
(which has all the information about the coefficients of g
except the constant term) and g(0) (the constant term).

We can think of f1 being computed as an element in
F(x, z) where the degree can be actually large (> d),
however it can be shown to be at most poly(s, d). Further,
one can assume that f1 =:

∑d−v2−2
i=0 Ciz

i, over R′(x);
we know such representations exist as f1 ∈ F(x)[[z]]. One
can compute such expressions by using the inverse identity
to expand 1/ABP expression. We emphasize that we work
with the ‘reduced’ ABP representation i.e. the denominator
is not divisible by z; otherwise we can divide both numerator
and denominator by the maximum power of z and achieve
such form (since it is a power series in z), to avoid 0/0
expressions. Thus, the reduced expression must look like
ABP1/(ABP2 + z ·ABP3), where ABP2 is non-zero and z-
free. Expanding it using the inverse identity and truncating
till d − v2 − 2, we get: f1 ≡ (ABP1/ABP2) · (1/(1 + z ·
ABP3/ABP2)) ≡

∑d−v2−2
i=0 Ci z

i mod zd−v2−1.
One can show that each Ci has a small ABP/ABP by

simple interpolation and using the fact that ABPs are closed
under many-time multiplication (and addition). Finally, by
definite integration, we have

Φ(f)/t2−Φ(f)/t2|z=0 ≡
d−v2−1∑
i=1

(Ci/i) ·zi mod zd−v2 .

(2)
What is Φ(f)/t2|z=0? As Φ(f)/t2 ∈ F(x)[[z]],

Φ(f)/t2 |z=0 ∈ F(x). Also, by assumption Φ(T1) and T̃2,
evaluated at z = 0 are non-zero elements in F(ε). Taking
limit in Equation 1, we get:

Φ(f)/t2 |z=0 = lim
ε→0

(
Φ(T1)/T̃2 |z=0 + εa2

)
∈ F . (3)

However, by assumption valz(t2) ≥ v2 and
moreover t2 ∈ ΠΣ = ΠΣ. Equation 2 yields
Φ(f) ∈

(∑d−v2−1
i=1 Ci/i z

i + F
)
· (ΠΣ) mod zd ⊆

(ABP/ABP) mod zd, of polynomial size. Finally, as
Φ(f) is a < d-degree polynomial, we can eliminate the
division gate to finally get a poly-sized ABP. This implies
that f has a small ABP.

Generalizing it to k. The idea is inductive, natural
and easily scales to show de-bordering result for constant
k. However, for our main proof we will instead give an
upper bound for a more general bloated class (it is in
depth-5): Gen(k, s) := Σ[k] (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ); they
compute elements of the form

∑k
i=1(Ui/Vi)·(Pi/Qi), where

Ui, Vi ∈ ΠΣ, and Pi, Qi ∈ Σ∧Σ, and the circuit (with
division allowed) has size s. Of course, it trivially subsumes
Σ[k]ΠΣ. Colloquially, we will show that this bloated model
is closed under DiDIL operations, which is the reason we
could obtain an interesting upper bound. We also emphasize
that the last step of substituting z = 0 and taking limit,
as seen in Equation 3, would be slightly more general



than just an element in F; critically it will be of the form
limε→0 Gen(k, ·)|z=0 ∈ limε→0

∑
F(ε) · (Σ∧Σ/Σ∧Σ) ⊆

limε→0 (Σ∧Σ/Σ∧Σ) ⊆ ARO/ARO, which overall gives
an ABP/ABP. Here, the size blowup is only polynomial,
as Σ∧Σ is closed under multiplication (blowup being mul-
tiplicative, though). Here, we crucially use the fact that
ΠΣ|z=0 ∈ F(ε) (this remains so, even in the inductive
steps!).

Remark. We point out that we needed to go to ABP, from
ARO, as ARO is not closed under inverse, i.e. 1/ARO may
not necessarily be an ARO.

Extending to depth-4. One can extend the above techniques
to de-border Σ[k]ΠΣ∧. We point out the necessary differ-
ences to generalize the above idea. Again, we work with a
Φ such that the bottom Σ∧ circuits are ‘invertible’.

Once we divide and derive, the analytic nature remains
the same. But action of dlog is more involved. Using the
inverse identity, one sees that 1/Σ∧ ∈ Σ∧Σ∧, yielding
dlog(ΠΣ∧) =

∑
dlog(Σ∧) ⊆

∑
(Σ∧/Σ∧) ⊆

∑
(Σ∧) ·

(Σ∧Σ∧) ⊆ Σ∧Σ∧.
Thus, one has to induct on the bloated model

(ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧). At the end of (k − 1)-th
step, we have: fk−1 ∈ (ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧) ⊆
(ΠΣ∧/ΠΣ∧) · (ARO/ARO) ⊆ ABP/ABP.

We crucially use the fact that– 1) ΠΣ∧ = ΠΣ∧, as Σ∧ =
Σ∧, and 2) Σ∧Σ∧ ⊆ ARO, again using duality trick and
Nisan’s characterization (Theorem 4). Once, we have fk−1,
one can similarly interpolate and find f0.

Proof idea of Theorem 2: Quasi-derandomizing
Σ[k]ΠΣ. The previous proof overview gives an idea about
de-bordering Σ[k]ΠΣ; unfortunately it only yields a small
ABP for which efficient PIT is not known. However, we will
show that DiDIL-reduction eventually lands us to identity
test a few smaller cases, for which fortunately efficient PITs
are known. We will follow same reduction strategy (and
hence same notation) as the above. Here in Φ, we do not
use random αi, instead αi = ai, for some a ∈ F (we try
polynomially many a) must make Φ(Ti) mod zd invertible.

k = 1 case. From the previous proof, we know that
ΠΣ = ΠΣ. The idea is to use x 7→ (z, z2, . . . , zn), for a new
variable z, and observe that this map preserves non-zeroness.
Finally, as this is a sn-degree univariate polynomial in z, a
trivial (sn+ 1)-size explicit hitting set exists.

k = 2 case. We will mainly focus on constructing an
efficient hitting set for k = 2, which will set the path to
generalize it to k. Recall, after divide and derive, we got
the identity: f1 + ε · S1 = g1 , overR′(x, ε) ,where f1 :=
∂z(Φ(f)/t2), and g1 := ∂z(Φ(T1)/T̃2).

We would like to have the property that f 6= 0, over
R(x), if and only if f1 6= 0, over R′(x). Unfortunately,
this may not necessarily hold. When can f1 = 0? Either
when– 1) Φ(f)/t2 is z-free, or 2) valz(f1) ≥ d− v2 − 1.

When is Φ(f)/t2 z-free? It is when Φ(f)/t2 =
Φ(f)/t2|z=0 ∈ F(x). However, by Equation 3,
Φ(f)/t2|z=0 ∈ F. Of course, if f 6= 0, it must be a
non-zero element in F and checking it is easy.

On the other hand, valz(f1) ≥ d − v2 − 1, implies
that valz(Φ(f)/t2) ≥ d − v2. However, valz(t2) ≥ v2, as
valz(T̃2) = v2. This means, valz(Φ(f)) ≥ d, which is a
contradiction, as we assumed that deg(f) < d.

The above discussion summarizes the following important
identity testing branching: Φ(f) 6= 0 , over R(x) ⇐⇒
f1 6= 0 , over R′(x) , or Φ(f)/t2 ∈ F\{0}.

We remark that the z = 0 substitution is a natural
condition as the derivation forgets the mod z part. At the
core, the idea is really “primal”. If a bivariate polynomial
G(X,Z) 6= 0, then either its derivative ∂Z G(X,Z) 6= 0,
or its constant-term G(X, 0) 6= 0 (note: G(X, 0) = G mod
Z). So, if G(a, 0) 6= 0 or ∂ZG(b, Z) 6= 0, then the union-set
{a, b} hits G(X,Z), i.e. either G(a, Z) 6= 0 or G(b, Z) 6= 0.
This is crucial to get the final hitting set.

As discussed above, testing Φ(f)/t2|z=0 ∈ F\{0} is easy,
let us call this hitting set H1. To check f1 6= 0, note that we
already have shown f1 ∈ (ΠΣ/ΠΣ) · (ARO). Individually,
we have efficient polynomial-time hitting set for ΠΣ (as
seen in k = 1 case) and quasipolynomial-time hitting set
for ARO.It remains to combine these hitting sets to find a
final hitting set (wrt only x) for (ΠΣ/ΠΣ) · (ARO).

Let f1 = (U/V ) · P , where U, V ∈ ΠΣ and P ∈ ARO.
Let a ∈ Fn such that U(a), V (a) 6= 0 (over F(z)); this
you find by noting U · V ∈ ΠΣ. Further, let b ∈ Fn such
that P (b) 6= 0. Then, consider the formal sum of points
a+t ·b, where t is a new variable. Note that, (U/V ·P )(a+
t · b) ∈ F(t, z)\{0}. Further, degree of t is polynomially
bounded. Thus, we have a sO(log log s)-time hitting set H2

for f1 (Theorem 10).
Once we have individual hitting set for both cases, as

discussed above, H := H1

⋃
H2, is indeed a hitting set (in

x) for Φ(f). Finally, as we have poly-degree bound on z,
trying a trivial hitting set gives finally a sO(log log s)-time
hitting set for Σ[2]ΠΣ.

Generalizing to k. As before, the general model of
induction will be on Gen(k, s). The core idea of branching-
out remains the same. We know that at the end of k − 1
steps, fk−1 ∈ (ΠΣ/ΠΣ)·(ARO/ARO). Using similar ideas
as above, it is possible to construct a hitting set (for details,
see Theorem 10).

However, as seen before, the z = 0 substitution, in the
k case, i.e. limε→0 Gen(k, ·)|z=0, gives an element of the
form ARO/ARO, for which we have a quasipolynomial-
time hitting set. As seen before, we know it suffices to hit
each branch separately, since their union can be shown to
be hitting set for the original Φ(f),. Moreover, the syntactic
degree can be shown to be bounded by sO(k), which finally
gives a quasipolynomial-time hitting set for the general k.



Extending to depth-4. To derandomize the two types of
Σ[k]ΠΣΥ circuits, where Υ = {∧,Π[δ]}, we again follow
DiDIL and branching-out strategy as above. We point out
the main differences in generalizing it to depth-4. As ΣΥ
circuits are at most s-sparse, it suffices to consider the
sparse-PIT map to construct the αi in Φ [81].

Once we divide and derive, the action of dlog be-
comes different. However, using the inverse identity, one
can show that 1/ΣΥ ∈ Σ∧ΣΥ, which finally yields that
dlog(ΠΣΥ) ∈ Σ∧ΣΥ. So, one inducts on the bloated
model (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ), and at the end,
we have fk−1 ∈ (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ) ⊆
(ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ).

Note that ΣΥ is closed under de-bordering (and so is
ΠΣΥ). When Υ = ∧, we know Σ∧Σ∧ ⊆ ARO. Moreover,
we have poly-time hitting set for ΠΣ∧. Therefore, after
combining them (Lem. 10), we have hitting sets Hj at each
j-th branch. Their union gives the final hitting set.

However, when Υ = Π[δ], we currently do not know how
to de-border, as we can no longer apply duality trick to
conclude that Σ∧ΣΠ[δ] has small ARO. Nonetheless, we
know quasipolynomial-time hitting set for Σ∧ΣΠ[δ] [70].
This method is rank-based and eventually shows that a
small-support (of size O(δ log s)) trailing monomial exists.
Think of this monomial as the ‘last’ monomial in a polyno-
mial (under a monomial ordering) where the variables used
is really ‘few’. This proof is based on bounding shifted-
partial-derivative space. However, rank behaves ‘well’ wrt
limit and thus this method can be extended to border; to
eventually show that small support trailing monomial exists
in a nonzero P ∈ Σ∧ΣΠ[δ] of size s. We can then use
trivial hitting set of size sO(δ log s) to conclude existence of
a non-zero small support trailing monomial in the border.

We would like to stress that the given circuit g, at point
x = a ∈ Fn, takes value in F(ε), though f(a) ∈ F. How-
ever we do not count the (potentially very-high) precision
of g(a) in our time-complexity; because we only care about
hitting set design within Fn.

Once we have a hitting set for Σ∧ΣΠ[δ], the result follows
as we can combine hitting set for ΠΣΠ[δ] and Σ∧ΣΠ[δ],
using Theorem 10, yielding a hitting setHj , for each branch.
Finally taking a union gives the final hitting set.

Proof idea of Theorem 3: Derandomizing log-variate
Σ[k]ΠΣ. We adapt techniques from [75] and argue that
eventually the same proof works to give a poly-time hitting
set for log-variate Σ∧Σ-circuits. First, let us argue that
why poly-time hitting set for Σ∧Σ translates to giving a
polynomial-time hitting set for Σ[k]ΠΣ.

To argue, we follow the DiDIL technique as shown in the
depth-3 circuits, and eventually arrive at the ‘end’ where
fk−1 ∈ (ΠΣ/ΠΣ) · (ARO/ARO). However, we point out
that this is not any generic poly-sized ARO but the de-
bordering of log-variate Σ∧Σ. If there is a poly-time hitting

set for this class, after combining this with poly-time hitting
set of ΠΣ (using Theorem 10), we again get a polynomial-
time hitting set Hk−1 for fk−1. Eventually, at each branch,
we will similarly get a polynomial-time hitting set Hj , at
the j-th step. Taking a union finally yields a polynomial-time
hitting set as we wanted.

Thus, it remains to argue that one can extend the idea
of [75] to give a polynomial-time hitting set for log-variate
Σ∧Σ-circuits. The flow of the proof goes as follows— (1)
show that f ∈ Σ∧Σ has poly(s) partial-derivative space;
this is a vector space spanned by all partial-derivatives of
f ; this follows from the fact that Σ∧Σ, over F(ε) has
polynomial partial-derivative space [97, Lemma 10.2], and
rank behaves “well” under limit yielding the same for f , (2)
show that low partial-derivative space implies low cone-size
monomials (for definition see the Def. II); this is directly
from [48, Corollary 4.14], (3) decide the non-zeroness of
the coefficient of a low cone-size monomial efficiently, over
F(ε); this can be done by general-interpolation, similar
to [75, Lemma 4]; see the statement in Theorem 12, and
(4) show that the low-cone-size monomials are poly(sd)-
many [75, Lemma 5], see Theorem 11) for the statement.

II. NOTATIONS AND PRELIMINARIES

Notation. Denote [n] = {1, . . . , n}, and x = (x1, . . . , xn).
For, a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn, and a variable
t, we denote a + t · b := (a1 + tb1, . . . , an + tbn).

We also use F[[x]], to denote the ring of formal power
series over F. Formally, f =

∑
i≥0 cix

i, with ci ∈ F, is an
element in F[[x]]. Further, F(x) denotes the function field,
where the elements are of the form f/g, where f, g ∈ F[x]
(g 6= 0).
Logarithmic derivative. Over a ring R and a variable y, the
logarithmic derivative dlogy : R[y] −→ R(y) is defined as
dlogy(f) := ∂y f/f ; here ∂y denotes the partial derivative
wrt variable y. One important property of dlog is that it is
additive over a product as dlogy(f · g) = ∂y(fg)/(fg) =
(f · ∂yg + g · ∂yf)/(fg) = dlogy(f) + dlogy(g). [dlog
linearizes product]
Circuit size. Some of the complexity parameters of a circuit
are depth (number of layers), syntactic degree (the maximum
degree polynomial computed by any node), fanin (maximum
number of inputs to a node).
Operation on Complexity Classes. For class C and D
defined over ring R, our bloated model is any combination
of sum, product, and division of polynomials from respective
classes. For instance, C/D = {f/g : f ∈ C, 0 6= g ∈ D}
similarly C·D for products, C+D for sum, and other possible
combinations. Also we use CR to denote the basic ring R on
which C is being computed over.
Hitting set. A set of points H ⊆ Fn is called a hitting-set
for a class C of n-variate polynomials if for any nonzero
polynomial f ∈ C, there exists a point in H where f
evaluates to a nonzero value. A T (s)-time hitting-set would



mean that the hitting-set can be generated in time ≤ T (s),
for input size s.
Valuation. Valuation is a map valy : R[y] −→ Z≥0, over
a ring R, such that valy(·) is defined to be the maximum
power of y dividing the element. It can be easily extended
to fraction field R(y), by defining valy(p/q) := valy(p) −
valy(q); where it can be negative.
Field. We denote the underlying field as F and assume that
it is of characteristic 0 (eg. Q,Qp). All our results hold for
other fields (eg. Fpe ) of large characteristic p.
Approximative closure. For an algebraic complexity class
C, the approximation is defined as follows [26, Def. 2.1].

Definition 1 (Approximative closure of a class): Let CF
be a class of polynomials defined over a field F. Then,
f(x) ∈ F[x1, . . . , xn] is said to be in Approximative Closure
C if and only if there exists polynomial Q ∈ F[ε,x] such
that CF(ε) 3 g(x, ε) = f(x) + ε ·Q(x, ε).
Cone-size of monomials. For a monomial xa, the cone of
xa is the set of all sub-monomials of xa. The cardinality of
this set is called cone-size of xa. It equals

∏
i∈[n] (ai + 1),

where a = (a1, . . . , an). We will denote cs(m), as the cone-
size of the monomial m.

III. BASICS FROM ALGEBRAIC COMPLEXITY

Our interest primarily is in the following two ABP-
variants: ROABP and ARO.

Definition 2 (Read-once Oblivious ABP (ROABP)): An
ABP is defined as Read-Once Oblivious Algebraic
Branching Program (ROABP) in a variable order
(xσ(1), . . . , xσ(n)) for some permutation σ : [n] → [n], if
edges of i-th layer of ABP are univariate polynomials in
xσ(i).

Definition 3 (Any-order ROABP (ARO)): A polynomial
f ∈ F[x] is computable by ARO of size s if for all possible
permutation of variables there exists a ROABP of size at
most s in that variable order.

Next we show that polynomials approximated by ARO
can be easily de-bordered. To the best of our knowledge the
following lemma was sketched in [35] (implicit in [88]).

Lemma 4 (De-bordering ARO): Consider a polynomial
f ∈ F[x] which is approximated by ARO of size s over
F(ε)[x]. Then, there exists an ARO of size s which exactly
computes f(x).

Lemma 5 (De-bordering Σ∧Σ∧): Consider a polynomial
f ∈ F[x] which is approximated by Σ∧Σ∧ of size s over
F(ε)[x] and syntactic degree D. Then there exists an ARO
of size O(sn2D2) which exactly computes f(x).

Lemma 6 (De-bordering ΠΣ∧): Consider a polynomial
f ∈ F[x] which is approximated by ΠΣ∧ of size s over
F(ε)[x]. Then there exists a ΠΣ∧ (hence an ARO) of size
s which exactly computes f(x).

Lemma 7 (Duality trick [33]): The polynomial f =

(x1 + . . .+ xn)d can be written as

f =
∑
i∈[t]

fi1(x1) · · · fin(xn),

where t = O(nd), and fij is a univariate polynomial of
degree at most d.

Here is an important lemma to show that positive val-
uation with respect to y, lets us express a function as a
power-series of y.

Lemma 8 (Valuation): Let f ∈ F(x, y) such that
valy(f) ≥ 0. Then, f ∈ F(x)[[y]]

⋂
F(x, y).

Let C and D be two classes over F[x]. Consider the
bloated-class (C/C)·(D/D), which has elements of the form
(g1/g2) · (h1/h2), where gi ∈ C and hi ∈ D (g2h2 6= 0).
One can also similarly define its border (which will be an
element in F(x)). Here is an important observation.

Lemma 9: (C/C) · (D/D) ⊆ (C/C) · (D/D).
The following lemma is useful to construct hitting set

for product of two circuit classes when the hitting set of
individual circuit is known.

Lemma 10: Let H1,H2 ⊆ Fn of size s1 and s2 respec-
tively be the hitting set of the class of n-variate degree d
polynomials computable by C1 and C2 respectively. Then,
for the class of polynomials computable by C1 · C2 there is
an explicit hitting set H of size s1 · s2 ·O(d).

The next lemma shows that there are only few low-cone
monomials in a non-zero n-variate polynomial.

Lemma 11 (Counting low-cones, [75, Lem 5]): The
number of n-variate monomials with cone-size at most k is
O(rk2), where r := (3n/ log k)log k.

The following lemma is the same as [75, Lemma 4]. It is
proved by multivariate interpolation.

Lemma 12 (Coefficient extraction): Given a circuit C,
over the underlying field F(ε), we can ‘extract’ the coeffi-
cient of monomial m in C; in time poly(size(C), cs(m), d),
where cs(m) denotes the cone-size of m.

IV. CONCLUSION

This opens a variety of questions which would enrich
border-complexity theory.

1) Does Σ[k]ΠΣ ⊆ ΣΠΣ; or Σ[k]ΠΣ ⊆ VF, i.e. does it
have a small formula?

2) Can we show that VBP 6= Σ[k]ΠΣ?
3) Can we improve the current hitting set of

sexp(k)·log log s to sO(poly(k)·log log s), or even a
poly(s)-time hitting set? The current technique seems
to blowup the exponent.

4) Can we de-border Σ ∧ ΣΠ[δ], or Σ[k]ΠΣΠ[δ], for
constant k and δ?

5) Can we show that Σ[k] ∧ Σ ⊆ Σ ∧ Σ for constant k?
6) Can we de-border Σ[2]ΠΣ∧[2]? i.e. the bottom-layer

has variable mixing.
De-bordering vs. Derandomization. In this work, de-

bordering results did not directly give us hitting sets, since



we end up getting more general models where explicit hitting
sets are unknown. However, we were still able derandomize
because of the DiDIL-technique. Moreover, while extending
this to depth-4, we could quasi-derandomize Σ[k]ΠΣΠ[δ],
because eventually hitting set for Σ ∧ ΣΠ[δ] is known. How-
ever we could not de-border Σ ∧ ΣΠ[δ], because the duality-
trick fails to give an ARO. This whole paradigm suggests
that de-bordering may be harder than its derandomization.
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