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Abstract. Border complexity of polynomials plays an integral role in the GCT (Geometric4
complexity theory) approach to P ̸= NP. It tries to formalize the notion of ‘approximating a polyno-5

mial’ via limits (Bürgisser FOCS’01). This raises the open question VP
?
= VP, as the approximation6

involves exponential precision which may not be efficiently simulable. Recently (Kumar TOCT’20)7

proved the universal power of the border of top fan-in two depth-3 circuits (Σ[2]ΠΣ). Here we an-8
swer some of the related open questions. We show that the border of bounded top fan-in depth-39

circuits (Σ[k]ΠΣ for constant k) is relatively easy—it can be computed by a polynomial size algebraic10
branching program (ABP). There were hardly any de-bordering results known for prominent models11
before our result.12

Moreover, we give the first quasipolynomial-time black-box identity test for the same. Prior best13
construction was in PSPACE (Forbes,Shpilka STOC’18). Also, with more technical work, we extend14
our results to restricted depth-4 circuits. Our de-bordering paradigm is a multi-step process; in short15

we call it DiDIL –divide, derive, induct, with limit. It ‘almost’ reduces Σ[k]ΠΣ to special cases of16
read-once oblivious algebraic branching programs (ROABPs) in any-order.17
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1. Introduction: Border complexity, GCT and beyond. Algebraic circuits21

are a natural and a non-uniform model of polynomial computation, which forms the22

basis for the vast study of algebraic complexity. We say that a polynomial f ∈23

F[x1, . . . , xn], over a field F is computable by a circuit of size s and depth d if there24

exists a directed acyclic graphs of size s (nodes + edges) and depth d such that its leaf25

nodes are labelled by variables or field constants, internal nodes are labelled with +26

and ×, and the polynomial computed at the root is f . Further, if the output of a gate27

is never re-used then it is a Formula. Any formula can be converted into a layered28

graph called Algebraic Branching Program (ABP). Various complexity measures can29

be defined on the computational model to classify polynomials in different complexity30

classes. For example VP (respectively VBP, respectively VF) is the class of polynomials31

of polynomial degree, computable by polynomial-sized circuits (respectively ABPs,32

respectively formulas). Finally, VNP is the class of polynomials which can be expressed33

as an exponential-sum of projection of a VP circuit family. For more details, refer34

to subsection 2.1 and [119, 113, 86].35

The problem of separating algebraic complexity classes has been a central theme36

of this study. As an algebraic analog of P vs. NP problem, Valiant [119] conjectured37

that VBP ̸= VNP and further strengthened it by conjecturing VP ̸= VNP. Over the38

years, impressive progress has been made towards resolving this, however, the existing39

tools have not been able to resolve this conclusively. Towards settling these conjectures40
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2 P. DUTTA, P. DWIVEDI AND N. SAXENA

Mulmuley and Sohoni [92] introduced Geometric Complexity Theory (GCT) program.41

In this program, they studied the border (or approximative) complexity, with the aim42

of approaching Valiant’s conjecture and strengthening it to: VNP ̸⊆ VBP, or equiva-43

lently, the padded permanent does not lie in the orbit closure of ‘small’ determinants.44

This notion was already studied in the context of designing matrix multiplication al-45

gorithms [116, 17, 18, 36, 82]. The hope, in the GCT program, was to use tools from46

algebraic geometry and representation theory, and possibly settle the question once47

and for all. This also gave a natural reason to understand the relationship between48

VP and VP (or VBP and VBP).49

In addition to the VP vs. VNP implication, GCT has deep connections with com-50

putational invariant theory [50, 90, 53, 29, 69], algebraic natural proofs [57, 21, 34, 79],51

lower bounds [30, 56, 82], optimization [8, 28] and many more. We refer to [31, Sec. 9]52

and [90, 91] for expository references.53

The simplest notion of the approximative closure comes from the following defini-54

tion [25, 26]: a polynomial f(x) ∈ F[x1, . . . , xn] is approximated by g(x, ε) ∈ F(ε)[x]55

if there exists a Q(x, ε) ∈ F[ε][x] such that g = f + εQ. When F = R, and under56

Euclidean topology, we can analytically think of approximation as limε→0 g = f . If g57

belongs to a circuit class C (over F(ε), i.e. any arbitrary ε-power is allowed as ’cost-free’58

constants), then we say that f ∈ C, the approximative closure of C. Further, one could59

draw parallels with algebraic definition of Zariski closure that works over every field,60

i.e. taking the closure of the set of polynomials (considered as points) of C: Let I be61

the smallest (annihilating) ideal whose zeros cover {coefficient-vector of g | g ∈ C};62

then put in C each polynomial f with coefficient-vector being a zero of I. Interest-63

ingly, all these notions are equivalent over the algebraically closed field (refer [25,64

Theorem 2.4] and [94, §2.C]).65

The size of the circuit computing g defines the approximative (or border) com-66

plexity of f , denoted size(f); evidently, size(f) ≤ size(f). Due to the possible 1/εM67

terms in the circuit computing g, evaluating it at ε = 0 may not be necessarily valid68

(though the limit exists). Hence, given f ∈ C, does not immediately reveal anything69

about the exact complexity of f . Since g(x, ε) = f(x) + ε ·Q(x, ε), we could extract70

the coefficient of ε0 from g using the standard interpolation trick, by setting random71

ε-values from F. However, the trivial bound on the circuit size of f would depend72

on the degree M of ε, which could provably be exponential in the size of the circuit73

computing g, i.e. size(f) ≤ size(f) ≤ exp(size(f)) [25, Thm. 5.7].74

1.1. De-bordering: The upper bound results. The major focus of this75

paper is to address the power of approximation in the restricted circuit classes. Given76

a polynomial f ∈ C, for an interesting class C, we want to upper bound the exact77

complexity of f (we call it ‘de-bordering’). If C = C, then C is said to be closed under78

approximation: For example 1) ΣΠ, sparse polynomials (with complexity measure79

being sparsity), 2) Monotone ABPs [22], and 3) ROABP (read-once ABP) and ARO80

(any-order ROABP), with measure being the width. ARO is an ABP with a natural81

restriction on the use of variables per layer; for definition and a formal proof, see82

Definition 2.8 and Lemma 2.22.83

Why care about upper bounds? One of the fundamental questions in the GCT84

paradigm is whether VP
?
= VP [91, 58]. Confirmation or refutation of this question85

has multiple consequences, both in the algebraic complexity and at the frontier of86

algebraic geometry. If VP = VP, then any proof of VP ̸= VNP will in fact also87

show that VNP ̸⊆ VP, as conjectured in [90]; however a refutation would imply that88

any realistic approach to the VP vs. VNP conjecture would even have to separate89
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the permanent from the families in VP\VP (and for this, one needs a far better90

understanding than the current state of the art).91

The other significance of the upper bound result arises from the flip [89, 90] whose92

basic idea in a nutshell is to understand the theory of upper bounds first, and then use93

this theory to prove lower bounds later. Taking this further to the realm of algorithms:94

showing de-bordering results, for even restricted classes (for example depth-3, small-95

width ABPs), could have potential identity testing implications. For details, see96

subsection 1.2.97

De-bordering results in GCT are in a very nascent stage; for example, the bound-98

ary of 3× 3 determinants was only recently understood [68]. Note that here both the99

number of variables n and the degree d are constant. In this work, however, we target100

polynomial families with both n and d unbounded. So getting exact results about101

such border models is highly nontrivial considering the current state of the art.102

De-bordering small-width ABPs. The exponential degree dependence of ε [25, 26]103

suggests us to look for separation of restricted complexity classes or try to upper bound104

them by some other means. In [24], the authors showed that VBP2 ⊆ VBP2 = VF ;105

here VBP2 denotes the class of polynomials computed by width-2 ABP. Surprisingly,106

we also know that VBP2 ⊊ VF = VBP3 [13, 9]. Very recently, [22] showed polynomial107

gap between ABPs and border-ABPs, in the trace model, for noncommutative and108

also for commutative monotone settings (along with VQP ̸= VNP).109

Quest for de-bordering depth-3 circuits. Outside such ABP results and depth-110

2 circuits, we understand very little about the border of other important models.111

Thus, it is natural to ask the same for depth-3 circuits, plausibly starting with depth-112

3 diagonal circuits (Σ∧Σ), i.e. polynomials of the form
∑

i∈[s] ci · ℓdi , where ℓi are113

linear polynomials. Interestingly, the relation between Waring rank (minimum s to114

compute f) and border Waring rank (minimum s, to approximate f) has been studied115

in mathematics for ages [117, 23, 15, 54], yet it is not clear whether the measures are116

polynomially related or not. However, we point out that Σ∧Σ has a small ARO; this117

follows from the fact that Σ∧Σ has small ARO by the duality trick [106], and ARO118

is closed under approximation [95, 46]; for details see Lemma 2.23.119

This pushes us further to study depth-3 circuits Σ[k]Π[d]Σ; these circuits compute120

polynomials of the form f =
∑

i∈[k]

∏
j∈[d] ℓij where ℓij are linear polynomials. This121

model with bounded fan-in has been a source of great interest for derandomization122

[43, 74, 71, 109, 6]. In a recent twist, Kumar [78] showed that border depth-3 fan-123

in two circuits are ‘universally’ expressive; i.e. Σ[2]Π[D]Σ over C can approximate124

any homogeneous d-degree, n-variate polynomial; though his expression requires an125

exceedingly large D = exp(n, d).126

Our upper bound results. The universality result of border depth-3 fan-in three127

circuits makes it imperative to study Σ[2]Π[d]Σ, for d = poly(n) and understand its128

computational power. To start with, are polynomials in this class even ‘explicit’129

(i.e. the coefficients are efficiently computable)? If yes, is Σ[2]Π[d]Σ ⊆ VNP? (See130

[58, 98] for more general questions in the same spirit.) To our surprise, we show that131

the class is very explicit; in fact every polynomial in this class has a small ABP. The132

statement and its proof is first of its kind which eventually uses analytic approach133

and ‘reduces’ the Π-gate to ∧-gate. We remark that it does not reveal the polynomial134

dependence on the ε-degree. However, this positive result could be thought as a baby135

step towards VP = VP. We assume the field F characteristic to be = 0, or large136

enough. For a detailed statement, see Theorem 3.2.137
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4 P. DUTTA, P. DWIVEDI AND N. SAXENA

Theorem 1.1 (De-bordering depth-3 circuits). For any constant k, Σ[k]ΠΣ ⊆138

VBP, i.e. any polynomial in the border of constant top fan-in size-s depth-3 circuits,139

can also be computed by a poly(s)-size algebraic branching program (ABP).140

Remarks. 1. When k = 1, it is easy to show that ΠΣ = ΠΣ [24, Prop. A.12] (see141

Lemma 2.21).142

2. The size of the ABP turns out to be sexp(k). It is an interesting open question143

whether f ∈ Σ[k]ΠΣ has a subexponential ABP when k = Θ(log s).144

3. Σ[k]ΠΣ is the orbit closure of k-sparse polynomials [87, Thm. 1.31]. Under-145

standing the orbit and its closure of certain classes is at the core of the GCT program.146

Theorem 1.1 is one of the first results that deborder orbit closures, in particular closure147

of constant-sparse polynomials.148

Extending to depth-4. Once we have dealt with depth-3 circuits, it is natural149

to ask the same for constant top fan-in depth-4 circuits. Polynomials computed by150

Σ[k]ΠΣΠ[δ] circuits are of the form f =
∑

i∈[k]

∏
j gij where deg(gij) ≤ δ. Unfor-151

tunately, our technique cannot be generalised to this model, primarily due to the152

inability to de-border Σ∧ΣΠ[δ]. However, when the bottom Π is replaced by ∧, we153

can show Σ[k]ΠΣ∧ ⊆ VBP; we sketch the proof in Theorem 5.1.154

1.2. Derandomizing the border: The black-box PITs. Polynomial Iden-155

tity Testing (PIT) is one of the fundamental decision problems in complexity theory.156

The Polynomial Identity Lemma [99, 38, 121, 111] gives an efficient randomized al-157

gorithm to test the zeroness of a given polynomial, even in the black-box settings158

(known as Black-box PIT), where we are not allowed to see the internal structure159

of the model (unlike the ’whitebox’ setting), but evaluations at points are allowed.160

It is still an open problem to derandomize black-box PIT. Designing a deterministic161

black-box PIT algorithm for a circuit class is equivalent to finding a set of points such162

that for every nonzero circuit, the set contains a point where it evaluates to a nonzero163

value [47, Sec. 3.2]. Such a set is called hitting set.164

A trivial explicit hitting set for a class of degree d polynomial of size O(dn) can be165

obtained using the Polynomial Identity Lemma. Heintz and Schnorr [67] showed that166

poly(s, n, d) size hitting set exists for d-degree, n-variate polynomials computed (as167

well as approximated) by circuits of size s. However, the real challenge is to efficiently168

obtain such an explicit set.169

Constructing small size explicit hitting set for VP is a long standing open prob-170

lem in algebraic complexity theory, with numerous algorithmic applications in graph171

theory [85, 93, 45], factoring [77, 41], cryptography [5], and hardness vs random-172

ness results [67, 96, 1, 70, 44, 42]. Moreover, a long line of depth reduction results173

[120, 7, 76, 118, 64] and the bootstrapping phenomenon [3, 81, 61, 10] has justified the174

interest in hitting set construction for restricted classes; e.g. depth 3 [43, 74, 109, 6],175

depth 4 [51, 12, 48, 112, 100, 101, 39], ROABPs [4, 66, 51, 60, 19] and log-variate176

depth-3 diagonal circuits [49]. We refer to [113, 107, 80] for expositions.177

PIT in the border. In this paper we address the question of constructing hitting178

set for restrictive border circuits. H is a hitting set for a class C, if g(x, ε) ∈ CF(ε),179

approximates a non-zero polynomial f(x) ∈ C, then ∃a ∈ H such that g(a, ε) ̸∈ ε·F[ε],180

i.e. f(a) ̸= 0. Note that, as H will also ‘hit’ polynomials of class C, construction of181

hitting set for the border classes (we call it ‘border PIT’) is a natural and possibly182

a different avenue to derandomize PIT. Here, we emphasize that a ∈ Fn such that183

g(a, ε) ̸= 0, may not hit the limit polynomial f since g(a, ε) might still lie in ε · F[ε];184

because f could have really high complexity compared to g. Intrinsically, this property185
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makes it harder to construct an explicit hitting set for VP.186

We also remark that there is no ‘whitebox’ setting in the border and thus we187

cannot really talk about ‘t-time algorithm’; rather we would only be using the term188

‘t-time hitting set’, since the given circuit after evaluating on a ∈ Fn, may require189

arbitrarily high-precision in F(ε).190

Prior known border PITs. Mulmuley [91] asked the question of constructing an191

efficient hitting set for VP. Forbes and Shpilka [52] gave a PSPACE algorithm over the192

field C. In [62], the authors extended this result to any field. Very few better hitting193

set constructions are known for the restricted border classes, for example poly-time194

hitting set for ΠΣ = ΠΣ [14, 75], quasi-poly hitting set for Σ∧Σ ⊆ ARO ⊆ ROABP195

[51, 4, 66] and poly-time hitting set for the border of a restricted sum of log-variate196

ROABPs [19].197

Why care about border PIT? PIT for VP has a lot of applications in the context198

of algebraic geometry and computational complexity, as observed by Mulmuley [91].199

For example Noether’s Normalization Lemma (NNL); it is a fundamental result in200

algebraic geometry where the computational problem of constructing explicit nor-201

malization map reduces to constructing small size hitting set of VP [91, 50]. Close202

connection between certain formulation of derandomization of NNL, and the problem203

of showing explicit circuit lower bounds is also known [91, 88].204

The second motivation comes from the hope to find an explicit ‘robust’ hitting205

set for VP [52]; this is a hitting set H such that after an adequate normalization,206

there will be a point in H on which f evaluates to (say) 1. This notion overcomes207

the discrepancy between a hitting set for VP and a hitting set for VP [52, 87]. We208

know that small robust hitting set exists [32], but an explicit PSPACE construction209

was given in [52]. It is not at all clear whether the efficient hitting sets known for210

restricted depth-3 circuits are robust or not.211

Our border PIT results. We continue our study on Σ[k]Π[d]Σ and ask for212

a better than PSPACE constructible hitting set. A polynomial-time hitting set is213

known for Σ[k]Π[d]Σ [108, 109, 6]. But, the border class seems to be more powerful,214

and the known hitting sets seem to fail. However, using our structural understanding215

and the analytic technique, we are able to quasi-derandomize the class completely.216

For the detailed statement, see Theorem 4.1.217

Theorem 1.2 (Quasi-derandomizing depth-3). There exists an explicit quasi-218

polynomial time (sO(log log s)) hitting set for Σ[k]ΠΣ-circuits of size s and constant219

k.220

Remarks. 1. For k = 1, as ΠΣ = ΠΣ, there is an explicit polynomial-time hitting set.221

2. Our technique necessarily blows up the size to sexp(k)·log log s. Therefore, it222

would be interesting to design a subexponential time algorithm when k = Θ(log s); or223

poly-time for k = O(1).224

3. We can not directly use the de-bordering result of Theorem 1.1 and try to find225

efficient hitting set, as we do not know explicit good hitting set for general ABPs.226

4. One can extend this technique to construct quasi-polynomial time hitting set227

for depth-4 classes: Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ], when k and δ are constants. For details,228

see section 6.229

The log-variate regime. In recent developments [3, 81, 61, 42] low-variate poly-230

nomials, even in highly restricted models, have gained a lot of interest and attention231

for their general implications in the context of derandomization and hardness results.232

A slightly non-trivial hitting set for trivariate ΣΠΣ∧-circuits [3, Theorem 4] would233
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in fact give a PIT algorithm for general circuits that runs in quasipolynomial time.234

With a hardness hypothesis [61, Theorem 1.6] optimizes the algorithm to polynomial235

time. This motivation has pushed researchers to work on log-variate regime and de-236

sign efficient PITs. In [49], the authors showed a poly(s)-time black-box identity test237

for n = O(log s) variate size-s circuits that have poly(s)-dimensional partial deriv-238

ative space; for example log-variate depth-3 diagonal circuits. Very recently, Bisht239

and Saxena [19] gave the first poly(s)-time black-box PIT for sum of constant-many,240

size-s, O(log s)-variate constant-width ROABPs (and its border).241

We remark that non-trivial border-PIT in the low-variate bootstraps to non-trivial242

PIT for VP as well [3, 61]. That motivates us to derandomize log-variate Σ[k]ΠΣ-243

circuits. Unfortunately, direct application of Theorem 1.2 fails to give a polynomial-244

time PIT. Surprisingly, adapting techniques from [49] to extend the existing result245

(Theorem 4.3), combined with our DiDIL technique, we prove the following. For246

details, see Theorem 4.4.247

Theorem 1.3 (Derandomizing log-variate depth-3). There exists an explicit248

poly(s)-time hitting set for n = O(log s) variate, size-s, Σ[k]ΠΣ circuits, for constant249

k.250

1.3. Limitation of standard techniques. In this section, we briefly discuss251

about the standard techniques for both the upper bounds and PITs, in the border252

sense, and point out why they fail to yield our results.253

Why known upper bound techniques fail? One of the most obvious way to254

de-border restricted classes is to essentially show a polynomial ε-degree bound and255

interpolate. In general, the bound is known to be exponential [26, Thm. 5.7] which256

crucially uses [83, Prop. 1]. This proposition essentially shows the existence of an257

irreducible curve C whose degree is bounded in terms of the degree of the affine variety258

that we are interested in. The degree is in general exponentially upper bounded by259

the size [27, Thm. 8.48]. Unless and until one improves these bounds for varieties260

induced by specific models (which seems hard), one should not expect to improve the261

ε-degree bound, and thus the interpolation trick seems useless.262

As mentioned before, Σ∧Σ-circuits could be de-bordered using the duality trick263

[106] (see Lemma 2.16) to make it an ARO and finally using Nisan’s characterization264

giving ARO = ARO [95, 46, 66] (Lemma 2.22). The trick is directly inapplicable to265

our model of interest, primarily due to the expected exponential blow in the top fan-266

in to convert the Π-gate to ∧-gate. We also remark that the duality trick was made267

field independent in [47, Lemma 8.6.4]. In fact, very recently, [20, Theorem 4.3] gave268

an improved duality trick with no size blowup, independent of degree and number of269

variables.270

Due to possibly heavy cancellation of ε-powers, all the non-trivial upper bound271

methods currently known for border complexity classes seems to not work for Σ[2]ΠΣ272

(refer [46, 24]). To elaborate, one of the major bottleneck is that individually limit273

of Ti as ε → 0, for i ∈ [2] may not exist, however, limε→0(T1 + T2) does exist, where274

Ti ∈ ΠΣ (over F(ε)[x]). For example T1 := ε−1(x+ ε2y)y and T2 := −ε−1(y + εx)x.275

No generic tool is available to ‘capture’ such cancellations, and may even suggest a276

non-linear algebraic approach to tackle the problem.277

Furthermore, [102] explicitly classified certain factor polynomials to solve non-278

border Σ[2]ΠΣ∧ PIT. This factoring-based idea seems to fail miserably when we study279

factoring mod ⟨εM ⟩; in that case, we get non-unique, usually exponentially-many,280

factorizations. For example x2 ≡ (x − a · εM/2) · (x + a · εM/2) mod ⟨εM ⟩; for all281
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a ∈ F. In this case, there are, in fact, infinitely many factorizations. Moreover,282

limε→0 1/εM ·
(
x2 − (x− a · εM/2) · (x+ a · εM/2)

)
= a2. Therefore, infinitely many283

factorizations may give infinitely many limits. To top it all, Kumar’s result [78]284

hinted a possible hardness of border-depth-3 (top fan-in two). In that sense, ours is285

a very non-linear algebraic proof for restricted models which successfully opens up a286

possibility of finding non-representation-theoretic, and elementary, upper bounds.287

Why known PIT techniques fail? Once we understand Σ[k]ΠΣ, it is natural288

to look for efficient derandomization. However, as we do not know efficient PIT for289

ABPs, known techniques would not yield an efficient PIT for the same. Further,290

in a nutshell—1) limited (almost non-existent) understanding of linear/algebraic de-291

pendence under limit, 2) exponential upper bound on ε, and 3) not-good-enough292

understanding of restricted border classes make it really hard to come up with an293

efficient hitting set. We elaborate these points below.294

Dvir and Shpilka [43] gave a rank-based approach to design the first quasipoly-295

nomial time algorithm for Σ[k]ΠΣ. A series of works [73, 108, 109, 110] finally gave296

a sO(k)-time algorithm for the same. Their techniques depend on either generaliz-297

ing Chinese remaindering (CR) via ideal-matching or certifying paths, or via efficient298

variable-reduction, to obtain a good enough rank-bound on the multiplication (ΠΣ)299

terms. Most of these approaches required a linear space, but possibility of exponen-300

tial ε-powers and non-trivial cancellations make these methods fail miserably in the301

limit. Similar obstructions also hold for [87, 103, 16] which give efficient hitting sets302

for the orbit of sparse polynomials (which is in fact dense in ΣΠΣ). In particular,303

Medini and Shpilka [87] gave PIT for the orbits of variable disjoint monomials (see304

[87, Defn. 1.29]), under the affine group, but not the closure of it. Thus, they do not305

even give a subexponential PIT for Σ[2]ΠΣ.306

Recently, Guo [59] gave a sδ
k

-time PIT, for non-SG (Sylvester-Gallai) Σ[k]ΠΣΠ[δ]307

circuits, by constructing explicit variety evasive subspace families; but to apply this308

idea to border PIT, one has to devise a radical-ideal based PIT idea. Currently, this309

does not work in the border, as ε mod ⟨εM ⟩ has an exponentially high nilpotency.310

Since radical⟨εM ⟩ = ⟨ε⟩, it ’kills’ the necessary information unless we can show a311

polynomial upper bound on M .312

Finally, [6] came up with faithful map by using Jacobian + certifying path tech-313

nique, which is more about algebraic rank rather than linear-rank. However, it is314

not at all clear how it behaves in the limit as ε goes to zero. For example f1 =315

x1 + εM · x2, and f2 = x1, where M is arbitrary large. Note that the underlying316

Jacobian J(f1, f2) = εM is nonzero; but it flips to zero in the limit. This makes the317

whole Jacobian machinery collapse in the border setting; as it cannot possibly give a318

variable reduction for the border model. (for example one needs to keep both x1 and319

x2 above.)320

Very recently, [39] gave a quasipolynomial time hitting set for exact Σ[k]ΠΣ∧321

and Σ[k]ΠΣΠ[δ] circuits, when k and δ are constant. This result is dependent on the322

Jacobian technique which fails under taking limit, as mentioned above. However, a323

polynomial-time whitebox PIT for Σ[k]ΠΣ∧ circuits was shown using DiDI-technique324

(Divide, Derive and Induct). This cannot be directly used because there was no325

ε (i.e. without limit) and Σ[k]ΠΣ∧ has only black-box access. Further, Theorem 1.1326

gives an ABP, where DiDI-technique cannot be directly applied. Therefore, our DiDIL-327

technique can be thought of as a strict generalization of the DiDI-technique, first328

introduced in [39], which now applies to uncharted borders.329

In a recent breakthrought result, Limaye, Srinivasan and Tavenas [84] showed330
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the first superpolynomial lower bound for constant-depth circuits. Their lower bound331

result, together with the ‘hardness vs randomness’ tradeoff result of [35] gives the first332

deterministic subexponential-time black-box PIT algorithm for general constant-depth333

circuits. Interestingly, these methods can be adapted in the border setting as well [11].334

However, compared to their algorithms, our hitting sets are significantly faster!335

1.4. Main tools and a brief road-map. In this section, we sketch the proof of336

Theorems 1.1-1.3. The proofs are analytic, based on induction on the top fan-in and337

rely on a common high level picture. They use logarithmic derivative, and its power-338

series expansion; we call the unifying technique as DiDIL (Di = Divide, D=Derive, I339

= Induct, L = Limit). We essentially reduce to the well-known ‘wedge’ models (as340

fractions, with unbounded top fan-in) and then ‘interpolate’ it (for Theorem 1.1) or341

deduce directly about its nonzeroness (Theorem 1.2-1.3).342

Basic tools and notations. The analytic tool that we use, appears in algebra (and343

complexity theory) through the ring of formal power series R[[x1, . . . , xn]] (in short344

R[[x]]), see [97, 41, 114]. One of the advantages of the ring R[[x]] emerges from345

the following inverse identity: (1 − x1)
−1 =

∑
i≥0 x

i
1, which does not make sense346

in R[x], but is available now. Lastly, the logarithmic derivative operator dlog y(f) =347

(∂yf)/f plays a very crucial role in ‘linearizing’ the product gate, since dlogy(f · g) =348

∂y(fg)/(fg) = (f · ∂yg + g · ∂yf)/(fg) = dlogy(f) + dlogy(g). Essentially, this349

operator enables us to use power-series expansion and converts the
∏
-gate to ∧.350

The road-map. The base case when the top fan-in k = 1, i.e., we have a single351

product of affine linear forms, and we are interested in its border. It is not hard352

to see that the polynomial in the border is also just a product of appropriate affine353

forms; for details refer to section 3). Now, suppose we have a depth-3 circuit of top354

fan-in 2, g(x, ε) = T1+T2, where each Ti is a product of affine linear forms. The goal355

is to somehow reduce this to the case of single summand. Before moving forward,356

we remark that some ideas described below, directly, can even be formally incorrect!357

Nonetheless, this sketch is “morally’” correct and, the eventual road-map insinuates358

the strength of the DiDIL-technique.359

For simplicity, let us assume that each linear form has a non-zero constant term360

(for instance by a random translation of the variables). Moreover, every variable xi is361

replaced by xi ·z for a new variable z; this variable z is the ‘degree counter’ that helps362

to keep track of the degree of the polynomials involved. Now, dividing both sides by363

T1, we get g/T1 = 1+T2/T1, and taking derivatives with respect to the variable z, we364

get ∂z(g/T1) = ∂z(T2/T1). This has reduced the number of summands on the right365

hand side to 1, although each summand has become more complicated now, and we366

have no control on what happens as ε→ 0.367

Since T1 is invertible in the power series ring in z, T2/T1 is well defined as well.368

Moreover, limε→0 T1 exists (well not really, but formally a proper ε-scaling of it does,369

which suffices since derivarive with respect to z does not affect the ε-scaling!) and is370

non-zero. From this it follows that after some truncation with respect to high degree371

z monomials, limε→0 ∂z(T2/T1) exists and has a nice relation to the original limit of372

g; see Claim 3.4!373

Lastly, and crucially, ∂z(T2/T1) mod zd = (T2/T1) ·dlog(T2/T1) mod zd can be374

computed by a not-too-complicated circuit structure. Interestingly, the circuit form is375

closed under this operation of dividing, taking derivatives and taking limits! Note that376

the dlog operator distributes the product gate into summation giving dlog(T2/T1) =377 ∑
dlog(Σ), where Σ denotes linear polynomials, and we observe that dlog(Σ) = Σ/Σ ∈378
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Σ∧Σ, the depth-3 powering circuits, over some ‘nice’ ring. The idea is to expand 1/ℓ,379

where ℓ is a linear polynomial, as sum of powers of linear terms using the inverse380

identity:381

1/(1− a · z) ≡ 1 + a · z + · · ·+ ad−1 · zd−1 mod zd .382

When there is a single remaining summand, the border of the more general struc-383

ture is easy-to-compute, and can be shown to have an algebraic branching program of384

not too large size. For details, we refer to Claim 3.6. For a constant k (& even gen-385

eral bounded depth-4 circuits), the above idea can be extended with some additional386

clever division and computation.387

The PIT results also have a similar high level strategy, although there are addi-388

tional technical difficulties which need some care at every stage. At the core, the idea is389

really “primal” and depends on the following: If a bivariate polynomial G(X,Z) ̸= 0,390

then either its derivative ∂Z G(X,Z) ̸= 0, or its constant-term G(X, 0) ̸= 0 (note:391

G(X, 0) = G mod Z). So, if G(a, 0) ̸= 0 or ∂ZG(b, Z) ̸= 0, then the union-set {a, b}392

hits G(X,Z), i.e. either G(a, Z) ̸= 0 or G(b, Z) ̸= 0.393

2. Preliminaries. In this section, we describe some of the assumptions and394

notations used throughout the paper.395

Notation. We use [n] to denote the set {1, . . . , n}, and x = (x1, . . . , xn). For,396

a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn, and a variable t, we denote a + t · b :=397

(a1 + tb1, . . . , an + tbn).398

We also use F[[x]], to denote the ring of formal power series over F. Formally,399

f =
∑

i≥0 cix
i, with ci ∈ F, is an element in F[[x]]. Further, F(x) denotes the function400

field, where the elements are of the form f/g, where f, g ∈ F[x] (g ̸= 0).401

Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative402

dlogy : R[y] −→ R(y) is defined as dlogy(f) := ∂y f/f ; here ∂y denotes the partial403

derivative with respect to variable y. One important property of dlog is that it is404

additive over a product as dlogy(f · g) = ∂y(fg)/(fg) = (f · ∂yg + g · ∂yf)/(fg) =405

dlogy(f) + dlogy(g). [dlog linearizes product]406

Valuation. Valuation is a map valy : R[y] −→ Z≥0, over a ring R, such that valy(·)407

is defined to be the maximum power of y dividing the element. It can be easily408

extended to fraction field R(y), by defining valy(p/q) := valy(p) − valy(q); where it409

can be negative.410

Field. We denote the underlying field as F and assume that it is of characteristic 0411

(for example Q,Qp). All our results hold for other fields (for example Fpe) of large412

characteristic p.413

Approximative closure. For an algebraic complexity class C, the approximation is414

defined as follows [24, Def. 2.1].415

Definition 2.1 (Approximative closure of a class). Let CF be a class of poly-416

nomials defined over a field F. Then, f(x) ∈ F[x1, . . . , xn] is said to be in Ap-417

proximative Closure C if and only if there exists polynomial Q ∈ F[ε,x] such that418

g(x, ε) := f(x) + ε ·Q(x, ε) is in CF(ε).419

Cone-size of monomials. For a monomial xa, the cone of xa is the set of all420

sub-monomials of xa. The cardinality of this set is called cone-size of xa. It equals421 ∏
i∈[n] (ai + 1), where a = (a1, . . . , an). We will denote cs(m), as the cone-size of the422

monomial m.423

Partial Derivative Space of a polynomial f is a vector space formed by considering424

all possible linear combinations of partial derivatives of f , of all orders. The definition425
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10 P. DUTTA, P. DWIVEDI AND N. SAXENA

naturally extends to a set of polynomials. Here is an important lemma, originally from426

[47, Corollary 4.14], which shows that small partial derivative space implies existence427

of small cone-size monomial. For a detailed proof, we refer [55, Lemma 2.3.15]428

Theorem 2.2 (Cone-size concentration). Let F be a field of characteristic 0 or429

greater than d. Let P be a set of n-variate d-degree polynomials over F such that for430

all P ∈ P, the dimension of the partial derivative space of P is at most k. Then every431

nonzero P ∈ P has a cone-size-k monomial with nonzero coefficient.432

The next lemma shows that there are only few low-cone monomials in a non-zero433

n-variate polynomial.434

Lemma 2.3 (Counting low-cones, [49, Lemma 5]). The number of n-variate435

monomials with cone-size at most k is O(rk2), where r := (3n/ log k)log k.436

The following lemma can be proved using multi-variate interpolation.437

Lemma 2.4 (Coefficient extraction, [49, Lemma 4]). Given a circuit C, over438

the underlying field F(ε), and a monomial m, there is a poly(size(C), cs(m), d) time439

algorithm to compute the coefficient of m in C, where cs(m) denotes the cone-size of440

m.441

2.1. Basics of algebraic complexity. We will give a brief definition of various442

computational models and tools used in our results. Interested readers can refer443

[113, 47, 105] for more refined versions.444

Algebraic Circuits, defined over a field F, are directed acyclic graphs with a unique445

root node. The leaf nodes of the graph are labelled by variables or field constants446

and internal nodes are either labelled with + or ×. Further the edges can be labelled447

by field constants to denote scaler multiplication. The circuit naturally computes the448

polynomial at the root node from bottom to top. The size and depth of circuit is the449

size and depth of the underlying graph.450

Circuit size. Some of the complexity parameters of a circuit are depth (number of451

layers), and fan-in (maximum number of inputs to a node). Syntactic degree of a452

circuit is defined inductively as follows: Syntactic degree of a leaf is 0 for constants,453

and 1 for input variables. Syntactic degree of a sum-gate is the maximum of the454

syntactic degree of its children, moreover, for the product-gate it is the sum of the455

syntactic degree of its children.456

Operation on Complexity Classes. For base classes C and D over ring R, a457

bloated class consists of polynomials from the base classes in any combination of sum,458

product, and division. For instance, C/D = {f/g : f ∈ C, 0 ̸= g ∈ D} similarly459

C · D for products, C + D for sum, and other possible combinations. The respective460

computational model for the bloated class is referred to as ’bloated model’ in the461

following text. Also we use CR to denote the basic ring R on which C is being computed462

over.463

Hitting set. A set of points H ⊆ Fn is called a hitting set for a class C of n-variate464

polynomials if for any nonzero polynomial f ∈ C, there exists a point in H where f465

evaluates to a nonzero value. A T (s)-time hitting set would mean that the hitting set466

can be generated in time ≤ T (s), for input circuit of size s.467

Definition 2.5 (Algebraic Branching Program (ABP)). ABP is a computational468

model which is described using a layered graph with a source vertex s and a sink469

vertex t. All edges connect vertices from layer i to i + 1. Further, edges are labelled470
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by univariate polynomials. The polynomial computed by the ABP is defined as471

f =
∑

path γ:s⇝t

wt(γ)472

where wt(γ) is product of labels over the edges in path γ. The number of layers (∆)473

defines the depth and the maximum number of vertices in any layer (w) defines the474

width of an ABP. The size (s) of an ABP is the sum of the graph-size and the degree of475

the univariate polynomials that label. If d is the maximum degree of univariates then476

s ≤ dw2∆; in fact, we will take the latter as the ABP-size bound in our calculations.477

We remark that ABP is closed under both addition and multiplication, which is478

straightforward from the definition. In fact, we also need to eliminate division in479

ABPs. Here is an important lemma stated below from [115].480

Lemma 2.6 (Strassen’s division elimination). Let g(x, y) and h(x, y) be com-481

puted by ABPs of size s and degree < d. Further, assume h(x, 0) ̸= 0. Then,482

g/h mod yd can be written as
∑d−1

i=0 Ci · yi, where each Ci is of the form ABP/ABP483

of size O(sd2).484

Moreover, in case g/h is a polynomial, then it has an ABP of size O(sd2).485

Proof. ABPs are closed under multiplication, which makes interpolation, with486

respect to y, possible. Interpolating the coefficient Ci, of yi, gives a sum of d487

ABP/ABP’s; which can be rewritten as a single ABP/ABP of size O(sd2).488

Next, assume that g/h is a polynomial. For a random (a, a0) ∈ Fn+1, write489

h(x+ a, y + a0) =: h(a, a0)− h̃(x, y) and define g′ := g(x+ a, y + a0). Since h(x, y)490

is a non-zero polynomial, a random evaluation point such as (a, a0), guarantees that491

field element h(a, a0) ̸= 0, and h̃ ∈ ⟨x, y⟩. Of course, h̃ has a small ABP. Using the492

inverse identity in F[[x, y]], we have g(x+ a, y + a0)/h(x+ a, y + a0) =493

(g′/h(a, a0))/(1− h̃/h(a, a0)) ≡ (g′/h(a, a0)) ·

 ∑
0≤i<d

(h̃/h(a, a0))
i

 mod ⟨x, y⟩d .494

Note that, the degree blowsup in the above summands to O(d2) and the ABP-size is495

O(sd). ABPs are closed under addition/ multiplication; thus, we get an ABP of size496

O(sd2) for the polynomial g(x+a, y+a0)/h(x+a, y+a0). This implies the ABP-size497

for g/h as well.498

Our interest primarily is in the following two ABP-variants: ROABP and ARO.499

Definition 2.7 (Read-once Oblivious Algebraic Branching Program (ROABP)).500

An ABP is defined as Read-Once Oblivious Algebraic Branching Program (ROABP)501

in a variable order (xσ(1), . . . , xσ(n)) for some permutation σ : [n] → [n], if edges of502

i-th layer of ABP are univariate polynomials in xσ(i).503

Definition 2.8 (Any-order ROABP (ARO)). A polynomial f ∈ F[x] is com-504

putable by ARO of size s if for all possible permutation of variables there exists a505

ROABP of size at most s in that variable order.506

2.2. Properties of any-order ROABP (ARO). We will start with defining507

the partial coefficient space of a polynomial f to ’characterise’ the width of ARO. We508

can work over any field F.509

Let A(x) be a polynomial over F in n variables with individual degree d. Denote510
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the set M := {0, . . . , d}n. Note that, one can write A(x) as511

A(x) =
∑
α∈M

coefA(x
α) · xα .512

Consider a partition of the variables x into two parts y and z, with |y| = k. Then,513

A(x) can be viewed as a polynomial in variables y, where the coefficients are poly-514

nomials in F[z]. For monomial ya, let us denote the coefficient of ya in A(x) by515

A(y,a) ∈ F[z]. The coefficient A(y,a) can also be expressed as a partial derivative516

∂A/∂ya, evaluated at y = 0 (and multiplied by an appropriate constant), see [51,517

Section 6]. Moreover, we can also write A(x) as518

A(x) =
∑

a∈{0,...,d}k

A(y,a) · ya .519

One can also capture the space by the coefficient matrix (also known as the partial520

derivative matrix) where the rows are indexed by monomials pi from y, columns are521

indexed by monomials qj from z = x\y and (i, j)-th entry of the matrix is coefpi·qj (f).522

The following lemma formalises the connection between ARO width and dimen-523

sion of the coefficient space (or the rank of the coefficient matrix).524

Lemma 2.9 ([95]). Let A(x) be a polynomial of individual degree d, computed by525

an ARO of width w. Let k ≤ n and y be any prefix of length k of x. Then526

dimF{A(y,a) | a ∈ {0, . . . , d}k} ≤ w .527

We remark that the original statement was for a fixed variable order. Since, ARO528

affords any-order, the above holds for any-order as well. The following lemma is the529

converse of the above lemma and shows us that the dimension of the coefficient space530

is rightly captured by the width.531

Lemma 2.10 (Converse lemma [95]). Let A(x) be a polynomial of individual532

degree d with x = (x1, . . . , xn), such that for some w, for any 1 ≤ k ≤ n, and y,533

any-order-prefix of length k, we have534

dimF{A(y,a) | a ∈ {0, . . . , d}k} ≤ w .535

Then, there exists an ARO of width w for A(x).536

2.3. Properties of depth-3 diagonal circuits. In this section we will discuss537

various properties of Σ∧Σ circuits and basic Waring rank. The corresponding bloated538

model is Σ∧Σ/Σ∧Σ, that computes elements of the form f/g, where f, g ∈ Σ∧Σ. The539

following lemma gives us a sum of powers representation of monomial. For proofs see540

[33, Proposition 4.3].541

Lemma 2.11 (Waring identity for a monomial [33]). Let M = xb11 · · ·xbkk , where542

1 ≤ b1 ≤ · · · ≤ bk, and roots of unity Z(i) := {z ∈ C : zbi+1 = 1}. Then,543

M =
∑

ε(i)∈Z(i):i=2,··· ,k

γε(2),...,ε(k) · (x1 + ε(2)x2 + . . .+ ε(k)xk)
d
,544

where d := deg(M) = b1 + · · ·+ bk, and γε(2),··· ,ε(k) are
∏k

i=2 (bi + 1) many scalars.545

Remark. For fields other than F = C: We can go to a small extension (at most dk),546

for a monomial of degree d, to make sure that ε(i) exists.547

Using this, we show that Σ∧Σ is closed under constant-fold multiplication.548
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Lemma 2.12 (Σ∧Σ closed under multiplication). Let fi ∈ F[x], of syntactic549

degree ≤ di, be computed by a Σ∧Σ circuit of size si, for i ∈ [k]. Then, f1 · · · fk has550

Σ∧Σ circuit of size O((d2 + 1) · · · (dk + 1) · s1 · · · sk).551

Proof. Let fi =:
∑

j ℓ
eij
ij ; by assumption eij ≤ di. Each summand of

∏
i fi after552

expanding can be expressed as Σ∧Σ using Lemma 2.11 of size at most (d2+1) · · · (dk+553

1) ·
(∑

i∈[k] size(ℓiji)
)
. Summing up, for all s1 · · · sk many products, gives the upper554

bound.555

Remark. The above lemma, and its proof, hold good for the more general Σ∧Σ∧556

circuits.557

Using the additive and multiplicative closure of Σ∧Σ, we can show that Σ∧Σ/Σ∧Σ558

is closed under constant-fold addition.559

Lemma 2.13 (Σ∧Σ/Σ∧Σ closed under addition). Let fi ∈ F[x], of syntactic560

degree di, be computable by Σ∧Σ/Σ∧Σ of size si, for i ∈ [k]. Then,
∑

i∈[k] fi has a561

(Σ∧Σ/Σ∧Σ) representation of size O((
∏

i di) ·
∏

i si).562

Proof. Let fi =: ui1/ui2, where uij ∈ Σ∧Σ of size at most si. Then563

f =
∑
i∈[k]

fi =

∑
i∈[k]

ui1
∏
j ̸=i

uj2

 /

∏
i∈[k]

ui2

 .564

Use Lemma 2.12 on each product-term in the numerator to obtain Σ∧Σ of size565

O((
∏

i di) ·
∏

i si). Trivially, Σ∧Σ is closed under addition; so the size of the nu-566

merator is O((
∏

i di) ·
∏

i si). Similar argument can be given for the denominator.567

Remark. The above holds for Σ∧Σ∧/Σ∧Σ∧ circuits as well.568

Using a simple interpolation, the coefficient of ye can be extracted from f(x, y) ∈569

Σ∧Σ again as a small Σ∧Σ representation.570

Lemma 2.14 (Σ∧Σ coefficient extraction). Let f(x, y) ∈ F[x][y] be computed by571

a Σ∧Σ circuit of size s and degree d. Then, coefye(f) ∈ F[x] is a Σ∧Σ circuit of size572

O(sd), over F[x].573

Proof sketch. Let f =:
∑

i αi · ℓeii , with ei ≤ s and degy(f) ≤ d. Thus, write574

f =:
∑d

i=0 fi · yi, where fi ∈ F[x]. Interpolate using (d + 1)-many distinct points575

y 7→ α ∈ F, and conclude that fi has a Σ∧Σ circuit of size O(sd).576

Like coefficient extraction, differentiation of Σ∧Σ circuit is easy too.577

Lemma 2.15 (Σ∧Σ differentiation). Let f(x, y) ∈ F[x][y] be computed by a Σ∧Σ578

circuit of size s and degree d. Then, ∂y (f) is a Σ∧Σ circuit of size O(sd2), over579

F[x][y].580

Proof sketch. Lemma 2.14 shows that each fe has O(sd) size circuit where f =:581 ∑
e fe y

e. Doing this for each e ∈ [0, d] gives a blowup of O(sd2) and the representa-582

tion: ∂y (f) =
∑

e fe · e · ye−1 .583

Remark. Same property holds for Σ∧Σ∧ circuits.584

Lastly, we show that Σ∧Σ circuit can be converted into ARO. In fact, we give585

the proof for a more general model Σ∧Σ∧. The key ingredient for the lemma is the586

duality trick.587

Lemma 2.16 (Duality trick [106]). The polynomial f = (x1 + . . . + xn)
d can be588
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written as589

f =
∑
i∈[t]

fi1(x1) · · · fin(xn),590

where t = O(nd), and fij is a univariate polynomial of degree at most d.591

We remark that the above proof works for fields of characteristic = 0, or > d.592

Now, the basic idea is to convert ∧Σ∧ into ΣΠΣ{1}∧ (i.e. sum-of-product-of-593

univariates) which is subsumed by ARO [65, Section 2.5.2].594

Lemma 2.17 (Σ∧Σ∧ as ARO). Let f ∈ F[x] be an n-variate polynomial com-595

putable by Σ∧Σ∧ circuit of size s and syntactic degree D. Then f is computable by596

an ARO of size O(sn2D2).597

Proof sketch. Let ge = (g1(x1) + · · ·+ gn(xn))
e
, where deg(gi) · e ≤ D. Using598

Lemma 2.16 we get ge =
∑O(ne)

i=1 hi1(x1) · · ·hin(xn), where each hij is of degree at599

most D.600

We do this for each power (i.e. each summand of f) individually, to get the final601

sum-of-product-of-univariates; of top fan-in O(sne) and individual degree at most D.602

This is an ARO of size O(sne) · n ·D ≤ O(sn2D2).603

2.4. Basic mathematical tools. For the time-complexity bound, we need to604

optimize the following function:605

Lemma 2.18. Let k ∈ N≥4, and h(x) := x(k − x)7x. Then, maxi∈[k−1] h(i) =606

h(k − 1).607

Proof sketch. Differentiate to get h′(x) = (k−x)7x−x7x+x(k−x)(log 7)7x = 7x ·608

[x2(− log 7)+x(k log 7−2)+k]. It vanishes at x =
(

k
2 − 1

log 7

)
+

√(
k
2 − 1

log 7

)2
− k

log 7609

. Thus, h is maximized at the integer x = k − 1.610

Here is an important lemma to show that positive valuation with respect to y,611

lets us express a function as a power-series of y.612

Lemma 2.19 (Valuation). Let f ∈ F(x, y) such that valy(f) ≥ 0. Then, f ∈613

F(x)[[y]]614

Proof sketch. Let f = g/h such that g, h ∈ F[x, y]. Now, valy(f) ≥ 0, implies615

valy(g) ≥ valy(h). Let valy(g) = d1 and valy(h) = d2, where d1 ≥ d2 ≥ 0. Further,616

write g = yd1 · g̃ and h = yd2 · h̃. Write, h̃ = h0 + h1 y + h2 y
2 + · · ·+ hd y

d, for some617

d; with hi ∈ F[x]. Note that h0 ̸= 0. Thus618

f = yd1−d2 · g̃ · 1

h0 + h1y + · · ·+ hdyd
619

=
yd1−d2 · g̃

h0
· 1

1 + (h1/h0)y + · · ·+ (hd/h0)yd
∈ F(x)[[y]]620

621

2.5. De-bordering simple models. In this section we will discuss known de-622

bordering results of restricted models like product of sum of univariates and ARO.623

Polynomials approximated by ΠΣ can be easily de-bordered [24, Prop.A.12]. In624

fact, it is the only constructive de-bordering result known so far. We extend it to625

show that same holds for polynomials approximated by ΠΣ∧ circuits. In fact, we626

start it by showing a much more general theorem.627

Let C and D be two classes over F[x]. Consider the bloated-class (C/C) · (D/D),628

which has elements of the form (g1/g2) · (h1/h2), where gi ∈ C and hi ∈ D (g2h2 ̸= 0).629
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One can also similarly define its border (which will be an element in F(x)). Here is630

an important observation.631

Lemma 2.20. (C/C) · (D/D) ⊆ (C/C) · (D/D).632

Proof. Suppose (g1/g2) · h1/h2 = f + ε ·Q, where Q ∈ F(x, ε) and f ∈ F(x). Let
valε(gi) =: ai and valε(hi) =: bi. Denote, gi =: εai · g̃i, similarly h̃i. Further, assume

g̃i =: ĝi + ε · ĝ′i; similarly for h̃i, we define ĥi ∈ F[x]. Note that ĝi ∈ C, similarly

ĥi ∈ D. Then we have:

εa1−a2+b1−b2 ·
(
g̃1
g̃2

)
·

(
h̃1

h̃2

)
= f + ε ·Q.

Since limε→0 exists, the exponent a1+ b1− a2− b2 ≥ 0. If it is greater than one, then
f = 0. Moreover, if a1 + b1 − a2 − b2 = 0, then

f =

(
ĝ1
ĝ2

)
·

(
ĥ1

ĥ2

)
∈ (C/C) · (D/D)

Now, we show an important de-bordering result on ΠΣ∧ circuits.633

Lemma 2.21 (De-bordering ΠΣ∧). Consider a polynomial f ∈ F[x] which is634

approximated by ΠΣ∧ of size s over F(ε)[x]. Then there exists a ΠΣ∧ (hence an635

ARO) of size s which exactly computes f(x).636

Proof. We will show that ΠΣ∧ = ΠΣ∧ ⊆ ARO. From Lemma 2.20, it follows637

that ΠΣ∧ ⊆
∏
(Σ∧). However, we note that Σ∧ = Σ∧ and it does not change the638

size (as it can not increase the sparsity) (refer [24, Prop.A.12]). Therefore, the size639

does not increase and further it is an ARO. Thus, the conclusion follows.640

Next we show that polynomials approximated by ARO can be easily de-bordered.641

To the best of our knowledge the following lemma was sketched in [46]; also implicitly642

in [66].643

Lemma 2.22 (De-bordering ARO). Consider a polynomial f ∈ F[x] which is644

approximated by ARO of size s over F(ε)[x]. Then, there exists an ARO of size s645

which exactly computes f(x).646

Proof. By definition, there exists a polynomial g = f + εQ computable by width647

w ARO over F(ε)[x]. Note that w ≤ s. In this proof, we will use the partial derivative648

matrix. With respect to any-order-prefix y ⊂ x, consider the partial derivative matrix649

N(g). Using Lemma 2.9 and 2.10, we know rkF(ε)(N(g)) ≤ w. This means determinant650

of any (w+1)×(w+1) minor of N(g) is identically zero. One can see that the entries of651

the minor are coefficients of monomials of g which are in F[ε][x\y]. Thus, determinant652

polynomial will remain zero even under the limit of ε = 0. Since, limε→0 g = f , each653

minor (under limit) captures partial derivative matrix of f of corresponding rows and654

columns. Thus, we get rkF(N(f)) ≤ w. Lemma 2.10 shows that there exists an ARO,655

of width w over F, which exactly computes f .656

An obvious consequence of Lemma 2.17 and Lemma 2.22 is the following de-657

bordering result.658

Lemma 2.23 (De-bordering Σ∧Σ∧). Consider a polynomial f ∈ F[x] which is659

approximated by Σ∧Σ∧ of size s over F(ε)[x] and syntactic degree D. Then there660

exists an ARO of size O(sn2D2) which exactly computes f(x).661
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16 P. DUTTA, P. DWIVEDI AND N. SAXENA

2.6. Basic PIT tools. We dedicate this section to discuss some basic PIT tools662

that we will require in the main section. We will start with the simplest one obtained663

using PIT lemma of [111, 121, 38, 99].664

Lemma 2.24 (Trivial hitting set). For a class of n-variate, individual degree < d665

polynomial f ∈ F[x1, . . . , xn] there exists an explicit hitting set H ⊆ Fn of size dn+1.666

In other words, there exists a point α ∈ H such that f(α) ̸= 0 (if f ̸= 0).667

The above result becomes interesting when n = O(1) as it yields a polynomial-668

time explicit hitting set. For general n, we have better results for restricted circuits, for669

example sparse circuits ΣΠ, [2, 75] gave a map which reduces multivariate sparse poly-670

nomial into univariate polynomial of small degree, while preserving the non-identity.671

Since testing (low-degree) univariate polynomial is trivial, we get a simple PIT algo-672

rithm for sparse polynomials.673

Indeed if identity of sparse polynomial can be tested efficiently, product of sparse674

polynomials ΠΣΠ can be tested efficiently. We formalise this in the following lemma.675

Lemma 2.25 ([104, Lemma 2.3]). For the class of n-variate, degree d polynomial676

f ∈ F[x1, . . . , xn] computable by ΠΣΠ of size s, there exist an explicit hitting set of677

size poly(s, d).678

Finally, we state the best known PIT result for ARO, see [66, 60] for more details.679

Theorem 2.26 (ARO hitting set). For the class of d-degree n-variate polyno-680

mials f ∈ F[x] computable by size s ARO, there exists an explicit hitting set of size681

sO(log log s).682

The following lemma is useful to construct hitting set for product of two circuit683

classes when the hitting set of individual circuit is known.684

Lemma 2.27. Let H1,H2 ⊆ Fn of size s1 and s2 respectively be the hitting set685

of the class of n-variate degree d polynomials computable by C1 and C2 respectively.686

Then, for the class of polynomials computable by C1 · C2 there is an explicit hitting set687

H of size s1 · s2 ·O(d).688

Proof. Let f = f1 · f2 ∈ C1 · C2 such that f1 ∈ C1 and f2 ∈ C2. For each ai ∈ H1,689

bj ∈ H2 define a ‘formal-sum’ evaluation point (over F[t]) c := (cℓ)1≤ℓ≤n such that690

cℓ := aiℓ + t · bjℓ; where t is a formal variable. Collect these points, going over i, j, in691

a set H. It can be seen, by shifting and scaling, that non-zeroness is preserved: there692

exists c ∈ H such that 0 ̸= f(c) ∈ F[t] and deg f(c) = O(d). Using trivial hitting set693

from Lemma 2.24 we obtain the final hitting set H of size O(s1 · s2 · d).694

Remark 1. The above argument easily extends to circuit classes (C1/C1) ·(C2/C2),695

which compute rationals of the form (g1/g2) · (h1/h2), where gi ∈ C1 and hi ∈ C2696

(g2h2 ̸= 0).697

Remark 2. The above lemma can be proved alternatively using hitting set gen-698

erators. These generators are polynomial mapping that certify the non-zeroness of a699

polynomial by composition. Refer [113, Section 4.1] for detailed discussion.700

3. De-bordering depth-3 circuits. In this section we will discuss the proof of701

de-bordering result (Theorem 1.1). Before moving on, we discuss the bloated model702

on which we will induct.703

Definition 3.1 (Bloated model). A circuit C is defined to be in bloated class704

Gen(k, s) over the ring of rational functions R(x), with parameter k and size s, if705

it computes f ∈ R(x) where f =
∑

i∈[k] Ti, such that Ti = (Ui/Vi) · Pi/Qi, with706

Ui, Vi, Pi, Qi ∈ R[x] such that Ui, Vi ∈ ΠΣ and Pi, Qi ∈ Σ∧Σ.707
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Further, size(C) =
∑

i∈[k] size(Ti), and size(Ti) = size(Ui) + size(Vi) + size(Pi) +708

size(Qi).709

It is easy to see that size-s Σ[k]ΠΣ lies in Gen(k, s), which will be our general710

model of induction. Here is the main de-bordering theorem for depth-3 circuits.711

Theorem 3.2 (De-bordering Σ[k]ΠΣ). Let f(x) ∈ F[x1, . . . , xn], such that f712

can be computed by a Σ[k]ΠΣ-circuit of size s. Then f is also computable by an ABP713

(over F), of size sO(k·7k).714

Proof. We will use DiDIL technique as discussed in subsection 1.4. The k = 1715

case is obvious, as ΠΣ = ΠΣ and trivially it has a small ABP. Further, as discussed716

before, k = 2 is already non-trivial. Eventually it involves de-bordering Gen(1, s); as717

DiDIL technique reduces the k = 2 problem to Gen(1, s) and then we interpolate.718

Base step: De-bordering Gen(1, s). Let g(x, ε) ∈ R(x, ε) be approximating f ∈719

R(x); where R is a commutative ring. The specific ring that is needed for the proof720

to work is defined later in the inductive step. Let d be the maximum of the syntactic721

degree of the denominator and numerator of the bloated circuit computing g. Here is722

the de-bordering result.723

Claim 3.3. Gen(1, s) ⊆ ABP/ABP, of size O(sd4n), while the syntactic degree724

blows up to O(nd2).725

Proof. Using Definition 3.1,726

g(x, ε) =: (U(x, ε)/V (x, ε)) · P (x, ε)/Q(x, ε) = f(x) + ε · S(x, ε) ,727

where U, V, P,Q ∈ R(ε)[x] such that U, V ∈ ΠΣ, P,Q ∈ Σ∧Σ. Let a1 := valε(U),728

a2 := valε(V ), b1 := valε(P ) and b2 := valε(Q). Extracting the maximum ε-power, we729

get730

f + ε · S = ε(a1−a2)+(b1−b2) ·
(
Ũ/Ṽ

)
·
(
P̃ /Q̃

)
,731

where Ũ , Ṽ , P̃ , Q̃ ∈ R(ε)[x], and their valuations with respect to. ε are zero i.e. limε→0 Ũ732

exists and is non-zero (similarly for Ṽ , P̃ , Q̃). Since, left side of the equation above is733

well-defined at ε = 0, it must happen that (a1−a2)+(b1−b2) ≥ 0. If (a1−a2)+(b1−734

b2) ≥ 1, then f = 0, and we have trivially de-bordered. Therefore, we can assume735

(a1 − a2) + (b1 − b2) = 0 which implies that736

f = (lim
ε→0

Ũ/ lim
ε→0

Ṽ ) · (lim
ε→0

P̃ / lim
ε→0

Q̃) ∈ (ΠΣ/ΠΣ) · (ARO/ARO) ⊆ ABP/ABP .737

We have used the fact that Ũ , Ṽ ∈ ΠΣ and P̃ , Q̃ ∈ Σ∧Σ of size at most s, over R(ε)[x].738

Further, by Lemma 2.21 and Lemma 2.23, we know that ΠΣ = ΠΣ and Σ∧Σ ⊆ ARO;739

therefore f is computable by a ratio of two ABPs of size at most O(s · d4n) and the740

degree gets blown up to atmost O(nd2).741

Bloat out: Reducing Σ[k]ΠΣ to de-bordering Gen(k − 1, ·). Let f0 := f be742

an arbitrary polynomial in Σ[k]ΠΣ, approximated by g0 ∈ F(ε)[x], computed by743

a depth-3 circuit C of size s over F(ε), i.e. g0 := f0 + ε · S0. Further, assume that744

deg(f0) < d0 := d ≤ s; we keep the parameter d separately, to optimize the complexity745

later. Here, we also stress that one could think of homogeneous circuits and thus the746

degree can be assumed to be the syntactic degree as well. Then, g0 =:
∑

i∈[k] Ti,0,747

such that Ti,0 is computable by a ΠΣ-circuit of size at most s over F(ε). Moreover,748
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18 P. DUTTA, P. DWIVEDI AND N. SAXENA

define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 = 1 as the base input case (of Gen(1, ·) ).749

As explained in the preliminaries, we do a safe division and derivation for reduction.750

Φ homomorphism. To ensure invertibility and facilitate derivation, we define a homo-751

morphism752

Φ : F(ε)[x] → F(ε)[x, z] , such that xi 7→ z · xi + αi ,753

where αi are random elements in F. Essentially, it suffices to ensure that Φ(Ti,0)|x=0 =754

Ti,0(α) ̸= 0 for all i ∈ [k]. We will be working with different ring Ri(x), at i-th step755

of induction, with R0 := F[z]/
〈
zd
〉
; here think of the z-variable as ‘cost-free’. Since756

Φ is an invertible map, our target is to prove the size upper bound for Φ(f0) which is757

free of mod zd, and thereby prove upper bound for f0 by applying the Φ−1.758

Divide and derive. Let vi,0 := valz(Φ(Ti,0)). Using the properties of the map we759

know vi,0 ≥ 0, for each i ∈ [k]. Further, with respect to ε-valuation, assume that760

Φ(Ti,0) =: εai,0 · T̃i,0, where T̃i,0 =: ti,0 + ε · t̃i,0(x, z, ε) (ti,0 = T̃i,0|ε=0). Note that,761

vi,0 = valz(T̃i,0). With respect to k, we assume mini∈[k] valz(T̃i,0) = vk,0 without loss762

of generality, else we rearrange the indices to achieve the assumption. Then, we divide763

Φ(g0) by T̃k,0 and derive with respect to z:764

Φ(f0)/T̃k,0 + ε · Φ(S0)/T̃k,0 = εak,0 +

k−1∑
i=1

Φ(Ti,0)/T̃k,0 [Divide]765

=⇒ ∂z

(
Φ(f0)/T̃k,0

)
+ ε∂z

(
Φ(S0)/T̃k,0

)
=

k−1∑
i=1

∂z

(
Φ(Ti,0)/T̃k,0

)
[Derive]766

=

k−1∑
i=1

(
Φ(Ti,0)/T̃k,0

)
· dlog

(
Φ(Ti,0)/T̃k,0

)
(3.1)767

=: g1 .768769

Definability. Let R1 := F[z]/⟨zd1⟩, and d1 := d0 − vk,0 − 1. For i ∈ [k − 1], define770

Ti,1 := (Φ(Ti,0)/T̃k,0) · dlog(Φ(Ti,0)/T̃k,0) , and f1 := ∂z (Φ(f0)/tk,0) .771

Claim 3.4. g1 approximates f1 correctly, i.e. limε→0 g1 = f1, where g1 (respec-772

tively f1) are well-defined over R1(ε,x) (respectively R1(x)).773

Proof. As we divide by the minimum valuation, by Lemma 2.19 we have774

valz(Φ(Ti,0)/T̃k,0) ≥ 0 =⇒ Φ(Ti,0)/T̃k,0 ∈ F(x, ε)[[z]] =⇒ Ti,1 ∈ F(x, ε)[[z]] .775

Note that valz(Φ(f0) + ε · Φ(S0)) = valz(
∑

i∈[k] Φ(Ti,0)) ≥ vk,0. Setting, ε = 0,776

implies that valz(Φ(f0)) ≥ vk,0 and hence, Φ(f0)/T̃k,0 ∈ F(x, ε)[[z]] (by Lemma 2.19).777

Moreover, (Φ(f0)/T̃k,0)|ε=0 = Φ(f0)/tk,0 ∈ F(x)[[z]]. Combining these it follows that778

Φ(f0)/tk,0 ∈ F(x)[[z]] =⇒ f1 ∈ F(x)[[z]] .779

Once we know that each Ti,1 and f1 are well-defined power-series, we claim that780
Eqn. (3.1) holds mod zd0−vk,0−1. Note that, Φ(f0)+ε ·Φ(S0) =

∑
i∈[k] Φ(Ti,0), holds781

mod zd. Thus after dividing by the minimum valuation element (with z-valuation782

vk,0), it holds mod zd0−vk,0 ; finally after differentiation it must hold mod zd0−vk,0−1.783

Further, as limε→0 T̃k,0 exists, we must have ∂z(Φ(f0)/tk,0) = limε→0 g1; i.e. g1784

approximates f1 correctly, over R1(x).785
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However, we stress that we also think of these as elements over F(x, z, ε), with786

z-degree being ‘kept track of’ (which could be > d). All these different ‘lenses’ of787

looking and computing will be important later.788

Debordering using reduced fan-in model. To complete the proof we need to show789

the following – (1) f1 ∈ Gen(k − 1, ·), and (2) assuming we know Gen(k − 1, ·) has790

small ABP/ABP, lift it exactly computes f0. To prove these claims, we will first show791

that each Ti,1 has small (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ)-circuit over R1(x, ε). As for the792

second part we will interpolate on the bloated model. If the degree of z is carefully793

controlled, the interpolation would be inexpensive. These two steps are essential in794

the general reduction as well. Hence we will elaborate on them after showing the795

fan-in reduction in general.796

Inductive step (j-th step): Reducing Gen(k − j, ·) to Gen(k − j − 1, ·). Suppose,797

we are at the j-th (j ≥ 1) step. Our induction hypothesis assumes–798

1.
∑

i∈[k−j] Ti,j =: gj , over Rj(x, ε), such that gj approximates fj correctly,799

where fj ∈ Rj(x), where Rj := F[z]/⟨zdj ⟩.800

2. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where

Ui,j , Vi,j ∈ ΠΣ and Pi,j , Qi,j ∈ Σ∧Σ, each in Rj(ε)[x] .

Each can be thought as an element in F(x, z, ε)
⋂

F(x, ε)[[z]] as well. As-801

sume that the syntactic degree of each denominator and numerator of Ti,j is802

bounded by Dj .803

3. vi,j := valz(Ti,j) ≥ 0, for i ∈ [k − j]. Wlog, assume that mini vi,j = vk−j,j .804

Moreover, Ui,j |z=0 ∈ F(ε)\{0} (similarly for Vi,j).805

We do like the j = 0-th step done above, without applying any new homomorphism.806

Similar to that reduction, we divide and derive to reduce the fan-in further by 1.807

Divide and Derive. Let Tk−j,j =: εak−j,j · T̃k−j,j , where T̃k−j,j =: (tk−j,j + ε · t̃k−j,j)808

is not divisible by ε. Divide gj =: fj + ε · Sj , by T̃k−j,j , to get:809

fj/T̃k−j,j + ε · Sj/T̃k−j,j = εak−j,j +

k−j−1∑
i=1

Ti,j/T̃k−j,j810

=⇒ ∂z

(
fj/T̃k−j,j

)
+ ε · ∂z

(
Sj/T̃k−j,j

)
=

k−j−1∑
i=1

∂z

(
Ti,j/T̃k−j,j

)
811

=

k−j−1∑
i=1

(
Ti,j/T̃k−j,j

)
· dlog

(
Ti,j/T̃k−j,j

)
(3.2)812

=: gj+1 .813814

Definability. LetRj+1 := F[z]/⟨zdj+1⟩, where dj+1 := dj−vk−j,j−1. For i ∈ [k−j−1],815

define816

Ti,j+1 :=
(
Ti,j/T̃k−j,j

)
· dlog

(
Ti,j/T̃k−j,j

)
, and fj+1 := ∂z(fj/tk−j,j) .817

818

Claim 3.5 (Induction hypotheses). (i) gj+1 (respectively fj+1) are well-defined819

over Rj+1(x, ε) (respectively ,Rj+1(x)).820

(ii) gj+1 approximates fj+1 correctly, i.e., limε→0 gj+1 = fj+1.821
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Proof. Remember, fj and Ti,j ’s are elements in F(x, z, ε) which also belong to822

F(x, ε)[[z]]. After dividing by the minimum valuation, by similar argument as in823

Claim 3.4, it follows that Ti,j+1 and fj+1 are elements in F(x, z, ε)
⋂
F(x, ε)[[z]],824

proving the second part of induction-hypothesis-(2). In fact, trivially vi,j+1 ≥ 0, for825

i ∈ [k − j − 1] proving induction-hypothesis-(3).826

Similarly, Eqn. (3.2) holds over Rj+1(ε,x), or equivalently mod zdj+1 ; this is827

because of the division by z-valuation of vk−j,j and then differentiation, showing828

induction-hypothesis-(1). So, Eqn. (3.2) being computed mod zdj+1 is indeed valid.829

We also mention that using similar argument as in Claim 3.4, fj+1 ∈ F(x)[[z]].830

Finally, as fj+1 exists, it is obvious to see that limε→0 gj+1 = fj+1.831

Invertibility of ΠΣ−circuits. In order to prove the second part of induction hypoth-832

esis (3) we emphasize the role of dlog and its properties that make the arguments833

to go through. The action of dlog on Σ∧Σ results in polynomial blow-up in size834

(Lemma 2.15).835

What is the action on ΠΣ? As dlog distributes the product additively, it suffices836

to analyse dlog(Σ), and show that dlog(Σ) is in Σ∧Σ with polynomial blow-up in size.837

Simplifying Ti,j+1 gives:838

Ti,j

T̃k−j,j

= ε−ak−j,j · Ui,j · Vk−j,j

Vi,j · Uk−j,j
· Pi,j ·Qk−j,j

Qi,j · Pk−j,j
,839

=
Ui,j+1

Vi,j+1
· Pi,j ·Qk−j,j

Qi,j · Pk−j,j
840
841

Where we define Ui,j+1 := ε−ak−j,j · Ui,j · Vk−j,j , and Vi,j+1 := Vi,j · Uk−j,j . Using
inductive hypothesis, this directly means:

Ui,j+1|z=0, Vi,j+1|z=0 ∈ F(ε) \ {0}.

This proves the second part of induction-hypothesis-(3). The P ′s and Q′s in the842

equation above will be analysed along with the dlog action on Ti,j+1 in the upcoming843

claim.844

The overall size blowup. Finally, we show the main step: how to use dlog which845

is the crux of our reduction. We assume that at the j-th step, size(Ti,j) ≤ sj and by846

assumption s0 ≤ s.847

Claim 3.6 (Size blowup from DiDIL). T1,k−1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) over848

Rk−1(x, ε) of size sO(k7k). It is computed as an element in F(ε,x, z), with syntactic849

degree (in x, z) dO(k).850

Proof. Steps j = 0 vs j > 0 are slightly different because of the homomorphism851

Φ. However the main idea of using dlog and expand it as a power-series is the same,852

which eventually shows that dlog(ΠΣ) is in Σ∧Σ with a controlled blowup.853

For j = 0, we want to study dlog’s effect on Φ(Ti,0)/T̃k,0. As dlog distributes854

over product and thus it suffices to study dlog(ℓ), where ℓ ∈ R(ε)[x]. However, by855

the property of Φ, each ℓ must be of the form ℓ = A − zB, where A ∈ F(ε)\{0} and856

B ∈ F(ε)[x]. Using the power series expansion, we have the following, over R1(x, ε):857

dlog(ℓ) = − ∂z (A− z ·B)

A (1− z ·B/A)
= −B

A
·
d1−1∑
j=0

(
z ·B
A

)j

.(3.3)858

859
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Note,(B/A) and (−z ·B/A)j have a trivial ∧Σ circuits, each of size O(s). For all j use860

Lemma 2.12 on (B/A) · (−z · B/A)j to obtain an equivalent Σ∧Σ of size O(j · d · s).861

Re-indexing gives us the final Σ∧Σ circuit for dlog(ℓ) of size O(d3 · s). We use the862

fact that d1 ≤ d0 = d. Here the syntactic degree blowsup to O(d2).863

For j > 0, the above equation holds over Rj(x). However, as mentioned before,864

the degree could be Dj (possibly > dj) of the corresponding A and B. Thus, the865

overall size after the power-series expansion would be O(D2
jdsize(ℓ)) [here again we866

use that dj ≤ d].867

Effect of dlog on Σ∧Σ is, naturally, more straightforward because it is closed under868

differentiation, as shown in Lemma 2.15. Using Lemma 2.15, we obtain Σ∧Σ/Σ∧Σ cir-869

cuit for dlog(Pi,j) of size O
(
D2

j · sj
)
. Similar claim can be made for dlog(Qi,j). Also,870

dlog(Ui,j · Vk−j,j) ∈
∑

dlog(Σ), which could be computed using the above Equation.871

Thus,872

dlog(Ti,j/T̃k−j,j) ∈ dlog(ΠΣ/ΠΣ)± Σ[4]dlog(Σ∧Σ)873

⊆ Σ∧Σ+ Σ[4]Σ∧Σ/Σ∧Σ = Σ∧Σ/Σ∧Σ .874875

Here, Σ[4] means sum of 4-many expressions. The first containment is by linearization.876

Express dlog(ΠΣ/ΠΣ) as a single Σ∧Σ-expression of size O(D2
jdjsj), by summing up877

the Σ∧Σ-expressions obtained from dlog(Σ). Next, there are 4-many Σ∧Σ/Σ∧Σ ex-878

pressions of size O(D2
j sj) as there are 4-many P ’s and Q’s. Additionally, the syntactic879

degree of each denominator and numerator of Σ∧Σ/Σ∧Σ grows up to O(Dj). Finally,880

we club Σ∧Σ/Σ∧Σ expressions (4 of them) to express it as a single Σ∧Σ/Σ∧Σ expres-881

sion using Lemma 2.15, with size blowup of O(D12
j s

4
j ). Finally, add the single Σ∧Σ882

expression of size O(D3
j sj), and degree O(dDj), to get O(s5jD

16
j d) size representation.883

Also, we need to multiply with Ti,j/T̃k−j,j which is of the form (ΠΣ/ΠΣ) ·884

(Σ∧Σ/Σ∧Σ), where each Σ∧Σ is basically product of two Σ∧Σ expressions of size sj885

and syntantic degree Dj and clubbed together, owing a blowup of O(Djs
2
j ). Hence,886

multiplying this (ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ)-expression with the Σ∧Σ/Σ∧Σ expression887

obtained from dlog-compuation, gives a size blowup of sj+1 := s7jD
O(1)
j d.888

As mentioned before, the main blowup of syntactic degree in the dlog compu-889

tation could be O(dDj) and clearing expressions and multiplying the without-dlog890

expression increases the syntactic degree only by a constant multiple. Therefore,891

Dj+1 := O(dDj) =⇒ Dj = dO(j). Hence, sj+1 = s7j · dO(j) =⇒ sj ≤ (sd)O(j·7j). In892

particular, sk−1 ≤ sO(k·7k); here we used that d ≤ s. This calculation quantitatively893

establishes induction-hypothesis-(2).894

Roadmap to trace back f0. The above claim established that gk−1 ∈ Gen(1, ·) and ap-895

proximates fk−1 correctly. We also know that Gen(1, ·) ∈ ABP/ABP, from Claim 3.3.896

Whence, gk−1 having sO(k7k)-size bloated-circuit implies: it can be computed as a897

ratio of ABPs with size sO(k7k) ·D4
k−1 · n = sO(k7k), and syntactic degree n ·D2

k−1 =898

dO(k). Now, we recursively ‘lift’ this quantity, via interpolation, to recover in order,899

fk−2, fk−3, . . . , f0; which we originally wanted.900

Interpolation: To integrate and limit. As mentioned above, we will interpolate901

recursively. We know fk−1 = ∂z(fk−2/t2,k−2) has a ABP/ABP circuit over F(x, z),902

i.e. each denominator and numerator is being computed in F[x, z], and size bounded903

by Sk−1 := sO(k7k). Here is an important claim about the size of fk−2 (we denote it904

by Sk−2).905

This manuscript is for review purposes only.



22 P. DUTTA, P. DWIVEDI AND N. SAXENA

Claim 3.7 (Tracing back one step). fk−2 can be expressed as

fk−2 =

dk−2−1∑
i=0

(ABP/ABP) zi ,

of size sO(k7k) and syntactic degree dO(k).906

Proof. Let the degree of both numerator and denominator of fk−1 be bounded907

by D′
k−1 := dO(k) then we know that it suffices to truncate the power series at zdk−1 .908

Further let e1, e2 ≤ D′
k−1 be the valuation of fk−1 with respect to z. If fk−1 is a909

power series in z, then e1 ≥ e2. The size of the ABPs does not increase after dividing910

by powers of z, since z and its powers is considered free (equivalent to computing over911

F(z)[x]). Therefore, ABP/ABP can be expressed as
∑dk−1−1

i=0 Ci,k−1 · zi, by using the912

inverse identity: 1/(1− z) ≡ 1 + . . .+ zdk−1−1 mod zdk−1 . Here, each Ci,k−1 has an913

ABP/ABP of size at most O(Sk−1 ·D′
k−1

2
); for details see Lemma 2.6.914

Once we get fk−1 =
∑dk−1−1

i=0 Ci,k−1z
i, definite-integration implies:

fk−2

t2,k−2
− fk−2

t2,k−2

∣∣∣∣
z=0

≡
dk−1∑
i=1

(
Ci,k−1

i

)
· zi mod zdk−1+1 .

The final trick is to get fk−2/t2,k−2|z=0 and ‘reach’ fk−2. As, fk−2/t2,k−2 ∈ F(x)[[z]],915

substituting z = 0 yields an element in F(x). Recall the identity:916

fk−2/t2,k−2|z=0 = lim
ε→0

(T1,k−2/T̃2,k−2|z=0 + εa2,k−2)917

∈ lim
ε→0

(F(ε) · (Σ∧Σ/Σ∧Σ) + εa2,k−2) .918
919

Since, F(ε)·(Σ∧Σ/Σ∧Σ)+εa2,k−2 ⊆ Σ∧Σ/Σ∧Σ, over F(ε)(x). We know that the limit920

exists and is ARO/ARO (⊆ ABP/ABP) of syntactic degree dO(k) and size sk−1 ·dO(k).921

Thus, from the above equation, it follows:922

fk−2/t2,k−2 = fk−2/t2,k−2|z=0 +

dk−1∑
i=1

(Ci,k−1/i) · zi ∈
dk−1∑
i=0

(ABP/ABP) · zi ,923

of size dk−1 · Sk−1D
′2
k−1 + sk−1 · dO(k), and degree D′

k−1 + dO(k). Lastly,924

t2,k−2 ∈ lim
ε→0

(ΠΣ/ΠΣ) · (Σ∧Σ/Σ∧Σ) ⊆ (ΠΣ/ΠΣ) · (ARO/ARO) .925

Thus, it has size sk−2, by previous Claims and degree bound Dk−2. Moreover, we926

know that valz(t2,k−2) ≥ v2,k−2 = dk−2−dk−1−1. Thus, multiply t2,k−2 and truncate927

it till dk−2 − 1. This gives us the blowup: size Sk−2 = dk−1 · Sk−1D
′2
k−1 + sk−1 · dO(k)928

and degree D′
k−2 = D′

k−1 + dO(k).929

So, we get: fk−2 has
∑dk−2−1

i=0 (ABP/ABP)zi of size Sk−2 = sO(k7k) and degree930

D′
k−2 = dO(k).931

The z = 0-evaluation. To trace back further, we imitate the step as above; and get932

fj one by one. But we first need a claim about the z = 0 evaluation of fj/tk−j,j .933

Claim 3.8 (For definite integration). fj/tk−j,j |z=0 ∈ ARO/ARO ⊆ ABP/ABP934

of size sO(k7k).935
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Proof. Note that, gj/T̃k−j,j =
∑

i∈[k−j] Ti,j/T̃k−j,j ∈ F(x)[[z, ε]], as the valuation936

with respect to z and ε is non-negative. Therefore,937 (
fj

tk−j,j

) ∣∣∣∣
z=0

= lim
ε→0

∑
i∈[k−j]

(
Ti,j

T̃k−j,j

)∣∣∣∣
z=0

938

= lim
ε→0

∑
i∈[k−j]

(
ε−ak−j,j · Ui,j · Vk−j,j

Uk−j,j · Vi,j
· Pi,j ·Qk−j,j

Pk−j,j ·Qi,j

) ∣∣∣∣
z=0

939

∈ lim
ε→0

∑
i∈[k−j]

(
F(ε) · Σ∧Σ

Σ∧Σ

)
= lim

ε→0

(
Σ∧Σ
Σ∧Σ

)
⊆
(
ARO

ARO

)
.940

941

Here we crucially used induction-hypothesis-(3) part: each Ui,j , Vi,j at z = 0, is an942

element in F(ε). Also, we used that Σ∧Σ is closed under constant-fold multiplication943

(Lemma 2.12). Finally, we take the limit to conclude that Σ∧Σ/Σ∧Σ ⊆ ARO/ARO.944

To show the ABP-size upper bound, let us denote the size(fj/tk−j,j |z=0) =: S′
j ,945

and the syntactic degree D′
j . We claim that S′

j = O(s
O(k−j)
j · D′

j
4
n). Because, we946

have a sum of k − j many Σ∧Σ/Σ∧Σ expressions each of size sj ; Σ∧Σ is closed947

under multiplication (Lemma 2.12) and Σ∧Σ to ARO conversion introduces exponent948

4 in the degree (Lemma 2.17). Each time the syntactic degree blowup is only a949

constant multiple, thus D′
j := dO(k) (which is ≤ sO(k)). Therefore, S′

j = sO(k−j)·j7j =950

sO(j(k−j)7j) = sO(k7k). Here, we use the fact that maxj∈[k−1] j(k− j)7j = (k− 1)7k−1951

(see Lemma 2.18). This finishes the proof.952

Size blowup. Suppose the ABP-size of fj is Sj ; thus we need to estimate S0. We953

do not need to eliminate division at each tracing-back-step (which we did to obtain954

fk−2). Since once we have
∑dj−1

i=0 (ABP/ABP) · zi, it is easy to integrate (with respect955

to z) without any blowup as we already have all the ABP/ABP’s in hand (they are956

z-free). The main size blowup (= S′
j) happens due to z = 0 computation which we957

calculated above (Claim 3.8). Thus, the final recurrence is Sj = Sj+1+S
′
j . This gives958

S0 = sO(k7k), which is the size of Φ(f), over F(z,x), being computed as an ABP/ABP.959

Using the degree bound on z, eliminate the division as in the proof of Claim 3.7960

to obtain an ε–free ABP over F[x, z] computing Φ(f). Apply the map Φ−1 to obtain961

the final ABP of size sO(k7k) computing the polynomial f .962

Remark. In general, we proved that if f ∈ Gen(k, s), then it can be computed by an963

ABP of size sO(k7k).964

4. Black-box PIT for border depth-3 circuits. We divide the section into965

two parts. First subsection deals with proving Theorem 1.2, while the second subsec-966

tion deals with a better hitting sets in the log-variate regime.967

4.1. Quasi-derandomizing Σ[k]ΠΣ circuits. Integration step of DiDIL is im-968

portant to give any meaningful upper bound of circuit complexity. However, a hitting969

set construction demands less—each inductive step of fan-in reduction only needs to970

preserve non-zeroness. Eventually, we exploit this to give an efficient hitting set con-971

struction for Σ[k]ΠΣ, and in the process of reducing the top fan-in analyse the bloated972

model Gen(k, ·).973

Theorem 4.1 (Hitting set for Σ[k]ΠΣ). There exists an explicit sO(k·7k·log log s)974

time hitting set for Σ[k]ΠΣ-circuits of size s. For constant k, the algorithm runs in975

quasi-polynomial time.976
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Proof. The basic fan-in reduction strategy is same as in section 3. Let f0 := f977

be an arbitrary polynomial in Σ[k]ΠΣ, approximated by g0 ∈ F(ε)[x], computed by978

a depth-3 circuit C of size s over F(ε), i.e. g0 := f0 + ε · S0. Further, assume that979

deg(f0) < d0 := d ≤ s. Let g0 =:
∑

i∈[k] Ti,0, such that Ti,0 is computable by a980

ΠΣ-circuit of size at most s over F(ε). As before, define R0 := F[z]/⟨zd⟩. Thus,981

f0 + ε · S0 =
∑

i∈[k] Ti,0, holds over R0(x, ε).982

Define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 = 1 to set the input instance of983

Gen(k, s). Of course, we assume that each Ti,0 ̸= 0 (otherwise it is a smaller fan-in984

than k).985

The homomorphism Φ. To ensure invertiblity and facilitate derivation, we define the986

same Φ as in section 3, i.e. Φ : F(ε)[x] → F(ε)[x, z] such that xi 7→ z · xi + αi. For987

the upper bound proof, we took αi ∈ F to be random; but for the PIT purpose,988

we cannot work with a random shift. The purpose of shifting was to ensure the989

invertibility, i.e., F(ε) ∋ Ti,0(α) ̸= 0; that is easy to ensure since ℓ(y, y2, . . . , yn) ̸= 0,990

for any linear polynomial ℓ, over any field. Since, deg(
∏

i Ti,0) ≤ s, there exists an991

i ∈ [s] such that α = (i, i2, . . . , in) hits Ti,0! In the proof, we will work with every such992

α (s-many), and for the right value, non-zeroness will be preserved, which suffices.993

0-th step: Reduction from k to k−1. We will use the same notation as in section 3.994

We know that g1 approximates f1 correctly over R1(x, ε). Rewriting the same, we995

have996

(4.1)

f0+ε ·S0 =
∑
i∈[k]

Ti,0 , overR0(x, ε) =⇒ f1+ε ·S1 =
∑

i∈[k−1]

Ti,1 , over R1(x, ε) .997

Here, define Ti,1 := (Φ(Ti,0)/T̃k,0) · dlog(Φ(Ti,0)/T̃k,0), for i ∈ [k − 1] and f1 :=998

∂z (Φ(f0)/tk,0), same as before. Also, we will consider Ti,1 as an element of F(x, z, ε)999

and keep track of deg(z).1000

The “iff” condition. Note that the equality in (4.1) over R1(ε,x) is only “one-sided”.1001

Whereas, to reduce the problem of identity testing to smaller fan-in case, we need a1002

necessary and sufficient condition: If f0 ̸= 0, we would like to claim that f1 ̸= 0 (over1003

R1(x)). However, it may not be directly true because of the loss of z-free terms of f0,1004

due to differentiation. Note that f1 ̸= 0 implies valz(f1) < d =: d1. Further, f1 = 0,1005

over R1(x), implies–1006

1. Either Φ(f0)/tk,0 is z-free. This implies Φ(f0)/tk,0 ∈ F(x), which further1007

implies it is in F, because z-free implies x-free, by substituting z = 0, by the1008

definition of Φ. Also, note that f0, tk,0 ̸= 0 implies Φ(f0)/tk,0 is a nonzero1009

element in F. Thus, it suffices to check whether Φ(f0)|z=0 = f0(α) is non-zero1010

or not.1011

2. Or ∂z(Φ(f0)/tk,0) = zd1 · p where p ∈ F(z,x) s.t. valz(p) ≥ 0. By simple1012

power series expansion, one can conclude that p ∈ F(x)[[z]] (Lemma 2.19).1013

Hence,1014

Φ(f0)/tk,0 = zd1+1 · p̃,where p̃ ∈ F(x)[[z]] =⇒ valz(Φ(f0)) ≥ d ,1015

a contradiction. Here we used the simple fact that differentiation decreases1016

the valuation by 1.1017

Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the1018

following:1019

f0 ̸= 0 over F[x] ⇐⇒ f1 ̸= 0 over R1(x), or 0 ̸= Φ(f0)|z=0 ∈ F.1020
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Recall, Claim 3.6 shows that Ti,1 ∈ (ΠΣ/ΠΣ) (Σ∧Σ/Σ∧Σ) with a polynomial blowup.1021

Therefore, subject to z = 0 test, we have reduced the identity testing problem to k−1.1022

We will recurse over this until we reach k = 1.1023

Induction step. Assume that we are at the end of j-th step (j ≥ 1). Our inductive1024

hypothesis assumes the following invariants:1025

1.
∑

i∈[k−j] Ti,j = fj + ε ·Sj over Rj(ε,x), where Ti,j ̸= 0 and Rj := F[z]/⟨zdj ⟩.1026

2. Each Ti,j = (Ui,j/Vi,j)·(Pi,j/Qi,j) where Ui,j , Vi,j ∈ ΠΣ and Pi,j , Qi,j ∈ Σ∧Σ.1027

3. valz(Ti,j) ≥ 0, for all i ∈ [k − j]. Moreover, Ui,j |z=0 ∈ F(ε)\{0} (similarly1028

Vi,j).1029

4. f0 ̸= 0 iff: fj ̸= 0 over Rj(x), or there exists 1 ≤ i ≤ j − 1 such that1030

fi/tk−i,i|z=0 ̸= 0, overF(x)1031

Reducing the problem to k− j−1. We will follow the j = 0 case, without applying1032

any homomorphism. Again, this reduction step is exactly the same as before, which1033

yields: fj + ε · Sj =
∑

i∈[k−j] Ti,j , over Rj(x, ε) =⇒1034

(4.2) fj+1 + ε · Sj+1 =
∑

i∈[k−j−1]

Ti,j+1, over Rj+1(x, ε).1035

Here, Ti,j+1 :=
(
Ti,j/T̃k−j,j

)
·dlog(Ti,j/T̃k−j,j), and fj+1 := ∂z(fj/tk−j,j), as before.1036

It remains to show that, all the invariants assumed are still satisfied for j + 1.1037

The first 3 invariants are already shown in section 3. The 4-th invariant is the iff1038

condition to be shown below.1039

The “iff” condition in the induction. The above (4.2) reduces k − j-summands to1040

k − j − 1. But we want an ‘iff’ condition to efficiently reduce the identity testing. If1041

fj+1 ̸= 0, then valz(fj+1) < dj+1. Further, fj+1 = 0, over Rj+1(x) implies–1042

1. Either fj/tk−j,j is z-free, i.e. fj/tk−j,j ∈ F(x). Now, if indeed f0 ̸= 0, then1043

tk−j,j as well as fj must be non-zero over F(z,x), by induction hypothe-1044

sis (assuming they are non-zero over Rj(x)). We will eventually show that1045

fj/tk−j,j |z=0 has a small ARO/ARO circuit; which helps us to construct a1046

quasi-polynomial size hitting set using Theorem 2.26.1047

2. Or ∂z(fj/tk−j,j) = zdj+1 · p, where p ∈ F(z,x) s.t. valz(p) ≥ 0. By sim-1048

ple power series expansion, one concludes that p ∈ F(x)[[z]] (Lemma 2.19).1049

Hence,1050

fj
tk−j,j

∈ zdj+1+1 · p̃, where p̃ ∈ F(x)[[z]] =⇒ valz(fj) ≥ dj1051

=⇒ fj = 0 , over Rj(x).10521053

Conversely, fj = 0, over Rj(x), implies valz(fj/T̃k−j,j) ≥ dj − vk−j,j =⇒1054

valz(∂z(fj/T̃k−j,j)) ≥ dj − vk−j,j − 1 = dj+1 =⇒ ∂z(fj/T̃k−j,j) = 0, over Rj+1(ε,x).1055

Fixing ε = 0 we deduce fj+1 = ∂z(fj/tk−j,j) = 0.1056

Thus, we have proved that fj ̸= 0 over Rj(x) iff

fj+1 ̸= 0 over Rj+1(x) , or , 0 ̸= (fj/tk−j,j)|z=0 ∈ F(x) .

This concludes the proof of the 4-th invariant.1057

Note: In the expression above fj/tk−j,j may be undefined at z = 0. However, we1058

keep track of z–degree to show that it is bounded in both numerator and denominator,1059

as in Claim 3.6 . Later when we show that (fj/tk−j,j)|z=0 ∈ ABP/ABP, we use the1060
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degree bound to interpolate and cancel out z–power to get a ratio which is well-defined1061

at z = 0.1062

Constructing the hitting set. The above discussion has reduced the problem1063

of testing Φ(f) to testing fk−1 or fj/tk−j,j |z=0, for j ∈ [k − 2]. We know that1064

fk−1 ∈ (ΠΣ/ΠΣ) · (ARO/ARO), of size sO(k7k), from Claim 3.6. We obtain the1065

hitting set of ΠΣ from Lemma 2.25, and for Σ∧Σ we obtain the hitting set from1066

Theorem 2.26 (due to Lemma 2.17). Finally we combine the two hitting sets using1067

Lemma 2.27 and use the fact that the syntactic degree is bounded by sO(k) to obtain1068

a hitting set Hk−1 of size sO(k7k log log s).1069

However, it remains to show– (1) efficient hitting set for fj/tk−j,j |z=0, for j ∈1070

[k − 2], and most importantly (2) how to translate these hitting sets to that of Φ(f).1071

Recall: Claim 3.8 shows that fk/tk−j,j |z=0 ∈ ARO/ARO, of size sO(k7k) (over1072

F(x)). Thus, it has a hitting set Hj of size sO(k7k log log s), for all j ∈ [k − 2] (Theo-1073

rem 2.26).1074

To translate the hitting set, we need a small property which will bridge the gap1075

of lifting the hitting set to f0.1076

Claim 4.2 (Fix x). For b ∈ Fn, if the following two things hold: (i) fj+1|x=b ̸=1077

0, over Rj+1, and (ii) valz(T̃k−j,j |x=b) = vk−j,j, then fj |x=b ̸= 0, over Rj.1078

Proof. Suppose the hypothesis holds, and fj |x=b = 0, over Rj . Then,

valz

((
fj

T̃k−j,j

)∣∣∣∣
x=b

)
≥ dj − vk−j,j =⇒ valz(∂z

((
fj

T̃k−j,j

)∣∣∣∣
x=b

)
≥ dj+1.

The last condition implies that ∂z(fj/T̃k−j,j)|x=b = 0, over Rj+1(x). Fixing ε = 01079

we deduce fj+1|x=b = 0. This is a contradiction!1080

Finally, we have already shown in section 3 that T̃k−j,j ∈ (ΠΣ/ΠΣ) ·(Σ∧Σ/Σ∧Σ),1081

and tk−j,j ∈ (ΠΣ/ΠΣ) · (ARO/ARO), of size sO(k7k), which is similar to fk−1.1082

Joining the dots: The final hitting set. We now have all the ingredients to construct1083

the hitting set for Φ(f0). We know Hk−1 works for fk−1 (as well as t2,k−2, because1084

they both are of the same size and belong to (ΠΣ/ΠΣ) · (ARO/ARO)). This lifts1085

to fk−2. But from the 4-th invariant, we know that Hk−2 works for the z = 01086

part. Eventually, lifting this using Claim 4.2, the final hitting set (in x) will be1087

H :=
⋃

j∈[k−1] Hj . We remark that we do not need extra hitting set for each tk−j,j ,1088

because it is already covered by Hk−1. We have also kept track of deg(z) which is1089

bounded by sO(k). We use a trivial hitting set for z which does not change the size.1090

Thus, we have successfully constructed a sO(k7k log log s)-time hitting set for Σ[k]ΠΣ.1091

Remark. The set H constructed is a sO(k7k log log s)-time hitting set for Gen(k, s), over1092

fields of large characteristic.1093

4.2. Border PIT for log-variate depth-3 circuits. In this section, we prove1094

Theorem 1.3. This proof is dependent on adapting and extending proof of Forbes,1095

Ghosh, and Saxena [49], by showing that there is a poly(s)-time hitting set for log-1096

variate Σ∧Σ-circuits.1097

Theorem 4.3 (Derandomizing log-variate Σ∧Σ). There is a poly(s)-time hitting1098

set for n = O(log s) variate Σ∧Σ-circuits of size s.1099
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Proof sketch. Let g = f + ε · Q, such that g ∈ Σ∧Σ, over F(ε), approximates1100

f ∈ Σ∧Σ. The idea is the same as [49]— (1) dimension of the space generated by all1101

partial derivatives of f is poly(s, d), (2) low partial derivative space implies low cone-1102

size monomials, (3) we can extract low cone-size monomials efficiently, (4) number of1103

low cone-size monomials is at most poly(sd)-many.1104

We remark that (2) is direct from [47, Corollary 4.14] (with origins in [50]); see1105

Theorem 2.2. (4) is also directly taken from [49, Lemma 5] once we assume (1); for1106

the full statement we refer to Lemma 2.3.1107

To show (1), we know that g has poly(s, d)–dimensional partial-derivative space1108

over F(ε). Denote1109

Vε :=

〈
∂ g

∂xa
| a <∞

〉
F(ε)

, and V :=

〈
∂ f

∂xa
| a <∞

〉
F
.1110

Consider the matrix Mε, where we index the rows by ∂xa , while columns are indexed1111

by monomials in the support of g, and the entries are the value of partial derivative1112

operator. Suppose, dim(Vε) =: r ≤ poly(s, d) (because g has a size–s Σ∧Σ circuit).1113

That means, all (r + 1) polynomials ∂ g
∂xa are linearly dependent. In other words,1114

the determinant of any (r + 1) × (r + 1) minor of Mε is 0. Note that limε→0Mε =1115

M , the corresponding partial-derivative matrix for f . Crucially, the zeroness of the1116

determinant of any (r + 1) × (r + 1) minor of Mε translates to the corresponding1117

(r+ 1)× (r+ 1) submatrix of M as well (one can also think of det as a “continuous”1118

function, yielding this property). In particular, dim(V ) ≤ r ≤ poly(s, d).1119

Finally, to show (3), we note that the coefficient extraction lemma [49, Lemma 4]1120

also holds over F(ε). Thus, given the circuit of g, we can decide whether the coefficient1121

of m =: xa is zero or not, in poly(cs(m), s, d)-time; see Lemma 2.4. Note: the1122

coefficient is an arbitrary element in F(ε); however we are only interested in its non-1123

zeroness, which is merely ‘unit-cost’ for us.1124

We only extract monomials with cone-size poly(s, d) (property (2)) and there are1125

only poly(s, d) many such monomials. Therefore, we have a poly(s)-time hitting set1126

for Σ∧Σ.1127

Once we have Theorem 4.3, we argue that this polynomial-time hitting set can be1128

used to give a poly-time hitting set for Σ[k]ΠΣ. We restate Theorem 1.3 with proper1129

complexity below.1130

Theorem 4.4 (Efficient hitting set for log-variate Σ[k]ΠΣ). There exists an1131

explicit sO(k7k)-time hitting set for n = O(log s) variate, size-s, Σ[k]ΠΣ circuits.1132

Proof sketch. We proceed similarly as in subsection 4.1, with same notations. The1133

reduction and branching out (or conditions) remains exactly the same; in the end, we1134

get that fk−1 ∈ (ΠΣ/ΠΣ) · (ARO/ARO). Crucially, observe that this ARO is not a1135

generic poly-sized ARO; these AROs are de-bordered log-variate Σ∧Σ circuits. From1136

Theorem 4.3, we know that there is a sO(k7k)-time hitting set (because of the size1137

blowup, as seen in section 3). Combining this hitting set with ΠΣ-hitting set is easy,1138

by Lemma 2.27.1139

Moreover, tk−j,j are also of the form (ΠΣ/ΠΣ) · (ARO/ARO), where again these1140

AROs are de-bordered log-variate Σ∧Σ circuits and sO(k7k)-time hitting set exists.1141

Therefore, take the union of the hitting sets (as before), each of size sO(k7k). This1142

gives the final hitting set which is again sO(k7k)-time constructible.1143
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5. Gentle leap into depth-4: De-bordering Σ[k]ΠΣ∧ circuits. The main1144

content of this section is to sketch the de-bordering theorem for Σ[k]ΠΣ∧. We intend1145

to extend DiDIL and induct on a slightly more general bloated model, as sketched in1146

subsection 1.4.1147

Theorem 5.1 (Σ[k]ΠΣ∧ upper bound). Let f(x) ∈ F[x1, . . . , xn], such that f1148

can be computed by a Σ[k]ΠΣ∧-circuit of size s. Then f is also computable by an1149

ABP (over F), of size sO(k·7k).1150

Proof sketch. We will go through the proof of Theorem 3.2 (see section 3), while1151

reusing the notations, and point out the important changes for the DiDIL technique to1152

work on this more general bloated-model (ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧). As earlier,1153

we induct on the top fan-in parameter k.1154

Base case. The analysis remains unchanged. We merely have to de-border ΠΣ∧1155

and Σ∧Σ∧ for the numerator and the denominator separately using Lemma 2.21 and1156

Lemma 2.23. Then use the product lemma (Lemma 2.20) to conclude:1157

(ΠΣ∧/ΠΣ∧) · (Σ∧Σ∧/Σ∧Σ∧) ⊆ (ΠΣ∧/ΠΣ∧) · (ARO/ARO) ⊆ ABP/ABP .1158

Reducing the problem to k−1. To facilitate DiDIL, we use the same Φ : F(ε)[x] −→1159

F(ε)[x, z]; since αi are random, the bottom Σ∧ circuits are ‘invertible’ (mod zd). For1160

the same reasons as Theorem 3.2, it suffices to upper bound the size of Φ(f).1161

We will apply again divide and derive to reduce the fan-in step by step. We just1162

need to understand Ti,j . Similar to Claim 3.6, we claim the following.1163

Claim 5.2. T1,k−1 ∈ ΠΣ∧
ΠΣ∧ · Σ∧Σ∧

Σ∧Σ∧ , an element in the ring Rk−1(x, ε), of size at1164

most sO(k7k).1165

Proof. The main part is to show that dlog acts on ΠΣ∧ circuits “well”. To1166

elaborate, we note that (3.3) can be written for Σ∧ circuits, giving a Σ∧Σ∧ circuit.1167

To elaborate, let A−z ·B =: h ∈ Σ∧, such that 0 ̸= A ∈ F(ε). Therefore, over R1(x),1168

we have1169

dlog(h) = − ∂z (z ·B)

A (1− z ·B/A)
= −∂z (z ·B)

A
·
d1−1∑
j=0

(
z ·B
A

)j

.1170

1171

Once we use the fact that Σ∧Σ∧ is closed under multiplication (Lemma 2.12), it1172

readily follows that dlog(ΠΣ∧) ∈ Σ∧Σ∧. Moreover, the derivative of Σ∧Σ∧ is again1173

a Σ∧Σ∧ circuit, due to easy interpolation (Lemma 2.15). Following the same proof1174

arguments (as for Theorem 3.2), we can establish the above claim.1175

It was already remarked that properties shown in subsection 2.3 hold for Σ∧Σ∧1176

circuits as well. Therefore, the rest of the calculations remain unchanged, and the1177

size claim holds.1178

Interpolation & Definite integration. It is again not hard to see that1179

fj/tk−j,j |z=0 ∈ lim
ε→0

∑
i∈[k−j]

F(ε) · (Σ∧Σ∧/Σ∧Σ∧) ⊆ ARO/ARO ⊆ ABP/ABP .1180

Here, we have used the facts that Σ∧Σ∧ is closed under multiplication (Lemma 2.12)1181

and Σ∧Σ∧ ⊆ ARO (Lemma 2.23). The remaining steps also follow similarly once we1182

have the ABP/ABP form of de-bordered expressions.1183

We remark that in all the steps the size and degree claims remain the same and1184

hence the final size of the circuit for Φ(f) immediately follows.1185
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6. Black-box PIT for border depth-4 circuits. The DiDIL-paradigm that1186

works for depth-3 circuits can be used to give hitting set for border depth-4 Σ[k]ΠΣΠ[δ]1187

and Σ[k]ΠΣ∧ circuits. But before that, we have to argue that we have efficient hitting1188

set for the wedge model Σ∧ΣΠ[δ], which we discuss in the next subsection. Later, we1189

will sketch the proof of the hitting set for border of bounded depth-4 circuits.1190

6.1. Efficient hitting set for Σ∧ΣΠ[δ]. Forbes [48] gave quasipolynomial-time1191

black-box PIT for Σ∧ΣΠ[δ]; using a rank-based method. We will make some small1192

observations to extend the same for Σ∧ΣΠ[δ] as well. We encourage interested readers1193

to refer to [48] for details. First, we need some definitions and properties.1194

Shifted Partial Derivative measure x≤ℓ∂≤m is a linear operator first introduced1195

in [72, 63] as:1196

x≤ℓ∂≤m(g) := {xc∂xb (g)}degxc≤ℓ,degxb≤m .1197

It was shown in [48] that the rank of shifted partial derivatives of a polynomial1198

computed by Σ∧ΣΠ[δ] is small. We state the result formally in the next lemma.1199

Consider the fractional field R := F(ε).1200

Lemma 6.1 (Measure upper bound). Let g(ε,x) ∈ R[x1, . . . , xn] be computable1201

by Σ∧ΣΠ[δ] circuit of size s. Then1202

rkspanx≤ℓ∂≤m(g) ≤ s ·m ·
(
n+ (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
.1203

Further it was observed in [48] that, the rank can be lower bounded using the1204

Trailing Monomial (ref [37, Section 2]). Under any monomial ordering, the trailing1205

monomial of g denoted by TM(g) is the smallest monomial in the set support(g) :=1206

{xa : coefxa(g) ̸= 0}.1207

Proposition 6.2 (Measure the trailing monomial). Consider g ∈ R[x]. For1208

any ℓ,m ≥ 0,1209

rkspanx≤ℓ∂≤m(g) ≥ rkspanx≤ℓ∂≤m (TM(g)) .1210

For fields of characteristic zero, a lower bound on a monomial was obtained.1211

Lemma 6.3 (Monomial lower bound). Consider a monomial xa ∈ R[x1, . . . , xn].1212

Then,1213

rkspan
(
x≤ℓ∂≤m (xa)

)
≥
(
η

m

)(
η −m+ ℓ

ℓ

)
1214

where η := |support (xa)|.1215

In [48] the above results were combined to show that the trailing monomial of1216

polynomials computed by Σ∧ΣΠ[δ] circuits have logarithmically small support size.1217

Using the same idea we show that if such a polynomial approximates f , then the1218

support of TM(f) is also small. We formalize this in the next lemma.1219

Lemma 6.4 (Trailing monomial support). Let g(ε,x) ∈ R[x1, . . . , xn] be com-1220

putable by a Σ∧ΣΠ[δ] circuit of size s such that g = f + ε · Q where f ∈ F[x] and1221

Q ∈ F[ε,x]. Let η := |support(TM(f))|. Then η = O(δ log s).1222

Proof. Let xa := TM(f) and S := {i | ai ̸= 0}. Define a substitution map ρ1223

such that xi → yi for i ∈ S and xi → 0 for i ̸∈ S. It is easy to observe that1224

TM(ρ(f)) = ρ(TM(f)) = ya. Using Lemma 6.1 we know:1225

rkRy≤ℓ∂≤m(ρ(g)) ≤ s ·m ·
(
η + (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
=: R .1226
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To obtain the upper bound for ρ(f) we use the following claim.1227

Claim 6.5. rkFy
≤ℓ∂≤m(ρ(f)) ≤ R.1228

Proof. Define the coefficient matrix N(ρ(g)) with respect to y≤ℓ∂≤m(ρ(g)) as1229

follows: the rows are indexed by the operators y=ℓi ∂y=mi , while the columns are1230

indexed by the terms present in ρ(g); and the entries are the respective operator-1231

action on the respective term in ρ(g). Note that rkF(ε)N(ρ(g)) ≤ R. Similarly define1232

N(ρ(f)) with respect to y≤ℓ∂≤m(ρ(f)), then it suffices to show that rkFN(ρ(f)) ≤ R.1233

For any r > R, let N (ρ(g)) be a r × r sub-matrix of N(ρ(g)). The rank bound1234

ensures: detN (ρ(g)) = 0. This will remain true under the limit ε = 0; thus,1235

det(N (ρ(f))) = 0.1236

Since r > R was arbitrary and linear dependence is preserved, we deduce:

rkFN(ρ(f)) ≤ R .

For lower bound, recall ya = TM(ρ(f)). Then, by Proposition 6.2 and Lemma 6.3,1237

we get:1238

rkFy
≤ℓ∂≤m(ρ(f)) ≥

(
η

m

)(
η −m+ ℓ

ℓ

)
.(6.1)1239

1240

Comparing Claim 6.5 and (6.1) we get:1241

s ≥ 1

m
·
(
η

m

)
·
(
η −m+ ℓ

ℓ

)
/

(
η + (δ − 1)m+ ℓ

(δ − 1)m+ ℓ

)
.1242

For ℓ := (δ−1)(η+(δ−1)m) andm := ⌊n/e3δ⌋, [48, Lem.A.6] showed η ≤ O(δ log s).1243

The existence of a small support monomial in a polynomial which is being ap-1244

proximated, is a structural result which will help in constructing a hitting set for this1245

larger class. The idea is to use a map that reduces the number of variables to the size1246

of the support of the trailing monomial, and then invoke Lemma 2.24.1247

Theorem 6.6 (Hitting set for Σ∧ΣΠ[δ]). For the class of n-variate, degree d1248

polynomials approximated by Σ∧ΣΠ[δ] circuits of size s, there is an explicit hitting1249

set H ⊆ Fn of size sO(δ log s) i.e., for every such nonzero polynomial f there exists an1250

α ∈ H for which f(α) ̸= 0.1251

Proof. Let g(ε,x) ∈ R[x1, . . . , xn] be computable by a Σ∧ΣΠ[δ] circuit of size s1252

such that g =: f + ε ·Q, where f ∈ F[x] and Q ∈ F[ε,x]. Then Lemma 6.4 shows that1253

there exists a monomial xa of f such that η := |support(xa)| = O(δ log s).1254

Let S ∈
(
[n]
η

)
. Define a substitution map ρS such that xi → yi for i ∈ S and1255

xi → 0 for i ̸∈ S. Note that, under this substitution non-zeroness of f is preserved1256

for some S; because monomials of support S ⊇ support(xa) will survive for instance.1257

Essentially ρS(f) is an η-variate degree-d polynomial, for which Lemma 2.24 gives a1258

trivial hitting set of size O(dη). Therefore, with respect to S we get a hitting set HS1259

of size O(dη). To finish, we do this for all such S, to obtain the final hitting set H of1260

size:1261 (
n

η

)
·O (dη) ≤ O((nd)η) .

1262

Remark 6.7. Unlike the PIT result for the border of depth 3 circuits, we obtained1263

this result without de-bordering the circuit at all.1264
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6.2. DiDIL on depth-4 models. The DiDIL-paradigm along with the branching1265

idea, in subsection 4.1, can be used to give hitting set for border depth-4 Σ[k]ΠΣΠ[δ]1266

and Σ[k]ΠΣ∧ circuits. For brevity, we denote these two types of (non-border) depth-41267

circuits by Σ[k]ΠΣΥ circuits where Υ ∈ {∧,Π[δ]}. We will give a separate hitting set1268

for the border of each class, while analysing them together.1269

Theorem 6.8 (Hitting set for bounded border depth-4). There exists an ex-1270

plicit sO(k·7k·log log s) (respectively sO(δ2k7k log s)-time hitting set for Σ[k]ΠΣ∧ (respec-1271

tively Σ[k]ΠΣΠ[δ])-circuits of size s.1272

Proof sketch. We will again follow the same notation as subsection 4.1. Let g0 :=∑
i∈[k] Ti,0 = f0 + εS0 such that g0 is computable by Σ[k]ΠΣΥ over F(ε). As earlier,

we will instead work with a bloated model that preserves the structure when applying
the DiDIL technique. The bloated model we consider is

Σ[k] (ΠΣΥ/ΠΣΥ) (Σ∧ΣΥ/Σ∧ΣΥ) .

Using the hitting set of product of sparse polynomials (refer [75]), we can obtain1273

a point α = (a1, . . . , an) ∈ F(ε)n such that ΠΣΥ evaluated at α is non-zero. This1274

evaluation point helps in maintaining its invertibility. We capture the non-zeroness1275

in a 1-1 invertible homomorphism Φ : F(ε)[x] → F(ε)[x, z] such that xi → z · xi + αi.1276

The invertibility of the map implies: f0 ̸= 0 if and only if Φ(f0) ̸= 0.1277

The next steps are essentially the same: reduce k to the bloated k − 1, and1278

inductively to the bloated k = 1 case. There will be ‘branches’ and for each branch1279

we will give efficient hitting sets; taking their union will give the final hitting set.1280

By Divide and Derive, we will eventually show that: f0 ̸= 0 ⇐⇒ fk−1 ̸=1281

0 overRj(x), or there exists 1 ≤ i ≤ k − 2 such that (fi/tk−i,i|z=0 ̸= 0, overF(x)) .1282

Similar to Claim 5.2 we can show that

T1,k−1 ∈ (ΠΣΥ/ΠΣΥ) (Σ∧ΣΥ/Σ∧ΣΥ) ,

over Rk−1(x, ε). The trick is again to use dlog and show that dlog(ΠΣΥ) ∈ Σ∧ΣΥ.1283

However the size blowup behaves slightly differently. To prove it formally, we need the1284

following claim that upper bounds the blow-up from applying the map ψ on ΣΠ[δ].1285

Claim 6.9. Let g ∈ ΣΠ[δ], then Ψ(g) ∈ ΣΠ[δ] of size at most 3δ · size(g), when1286

number of variables n≫ δ.1287

Proof sketch. Let xa be a monomial of degree δ, such that
∑

i ai ≤ δ. Then
the number of monomials produced by Ψ can be upper bounded by the AM-GM
inequality: ∏

i

(ai + 1) ≤
(∑

i ai + n

n

)n

≤ (1 + δ/n)n

As δ/n→ 0, we have (1 + δ/n)n → eδ. As e < 3, the upper bound follows.1288

We claim that T1,k−1 is in the bloated model with reasonable blowup in size.1289

Claim 6.10. For Σ[k]ΠΣ∧, respectively Σ[k]ΠΣΠ[δ], we have

T1,k−1 ∈
(
ΠΣ∧
ΠΣ∧

)
·
(
Σ∧Σ∧
Σ∧Σ∧

)
respectively

(
ΠΣΠ[δ]

ΠΣΠ[δ]

)
·
(
Σ∧ΣΠ[δ]

Σ∧ΣΠ[δ]

)
,

over Rk−1(x, ε) of size s
O(k7k) respectively (s3δ)O(k7k).1290
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Proof sketch. We will follow the line of arguments from the proof of Claim 5.21291

and explain it for one step i.e. over R1(x, ε). After applying the map, let A− z ·B =1292

h ∈ ΣΥ, such that A ∈ F(ε). Therefore, over R1(x), we have1293

dlog(h) = − ∂z (z ·B)

A (1− z ·B/A)
= −B

A
·
d1−1∑
j=0

(
z ·B
A

)j

.1294

1295

Here, use the fact that Σ∧ΣΥ is closed under multiplication. For Σ∧Σ∧ circuits, the1296

calculations remains the same as in section 5. However, for Σ∧ΣΠ[δ] circuits, note1297

that as h is shifted, size(B) is no longer poly(s); but it is at most 3δ · s, see Claim 6.9.1298

Therefore, the claim follows.1299

Eventually, one can show (using Lemma 2.20 to distribute):1300

fk−1 ∈ (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ) ⊆ (ΠΣΥ/ΠΣΥ) · (Σ∧ΣΥ/Σ∧ΣΥ) .1301

When Υ = ∧, we know Σ∧Σ∧ ⊆ ARO and thus this has a hitting set of size1302

sO(k7k log log s) (Theorem 2.26). We also know hitting set for ΠΣ∧ (Lemma 2.25).1303

Combining them using Lemma 2.27, we have a quasipolynomial-time hitting set of1304

size sO(k7k log log s).1305

As seen before, we also need to understand the evaluation at z = 0. By a similar1306

argument, it will follow that1307

fj/tk−j,j |z=0 ∈ lim
ε→0

∑
i∈[k−j]

F(ε) · (Σ∧ΣΥ/Σ∧ΣΥ) ⊆ Σ∧ΣΥ .1308

When Υ = ∧, we can de-border and this can be shown to be an ARO. Thus, in1309

that case fj/tk−j,j |z=0 ∈ ARO/ARO, where hitting set is known (similarly as before)1310

giving hitting set for each additional check in each step. Once we have hitting set1311

for each step, we can take a union (similar to Claim 4.2) to finally give the desired1312

hitting set.1313

Unfortunately, we do not know the size complexity upper bound of Σ∧ΣΥ, when1314

Υ = Π[δ], as the duality trick cannot be directly applied. However, as we know a1315

hitting set for Σ∧ΣΠ[δ], from Theorem 6.6; we will use it to get the final hitting1316

set. To see why this works, note that we need to hit fk−1 ∈
(
ΠΣΠ[δ]/ΠΣΠ[δ]

)
·1317

Σ∧ΣΠ[δ]/Σ∧ΣΠ[δ]. We know hitting sets for both ΠΣΠ[δ] (Lemma 2.25) and Σ∧ΣΠ[δ]1318

(Theorem 6.6), thus combining them is easy using Lemma 2.27.1319

To get the final estimate, define s′ := sO(δk7k); which signifies the size blow-up due1320

to DiDIL. Next, the hitting set Hk−1 for fk−1 has size (nd)O(δ log s′) ≤ sO(δ2k7k log s).1321

We know that a similar bound also holds for each branch. Taking their union gives1322

the final hitting set of the size as claimed.1323

7. Conclusion & future direction. This work introduces the DiDIL-technique1324

and successfully de-borders as well as derandomizes PIT for Σ[k]ΠΣ. Further we1325

extend this to subclasses of depth-4 as well. This opens a variety of questions which1326

would enrich border-complexity theory.1327

1. Does Σ[k]ΠΣ ⊆ ΣΠΣ, or Σ[k]ΠΣ ⊆ VF, i.e. does it have small formulas?1328

2. Can we show that VBP ̸= Σ[k]ΠΣ? 11329

1Very recently, Dutta and Saxena [40] showed an exponential gap between the two classes.
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3. Can we improve the current hitting set of sexp(k)·log log s to sO(poly(k)·log log s),1330

or even a poly(s)-time hitting set? The current technique seems to blow-up1331

the exponent.1332

4. Can we de-border Σ ∧ ΣΠ[δ], or Σ[k]ΠΣΠ[δ], for constant k and δ? Note that1333

we already have partially derandomized PIT for the class (Theorem 6.8).1334

5. Can we show that Σ[k] ∧ Σ ⊆ Σ ∧Σ for constant k? To show that polynomi-1335

als of constant border-Waring rank have waring rank which is polynomially1336

bounded by the degree and the number of variables.1337

6. Can we de-border Σ[2]ΠΣ∧[2]? i.e. the bottom layer has bi-variate polyno-1338

mials.1339

De-bordering vs. Derandomization. In this work, we have successfully de-bordered1340

and (quasi)-derandomized Σ[k]ΠΣ. Here, we remark that de-bordering did not di-1341

rectly give us a hitting set, since the de-bordering result was more general than the1342

models for which explicit hitting sets are known. However, we were still able to do1343

it because of the DiDIL-technique. Moreover, while extending this to depth-4, we1344

could quasi-derandomize Σ[k]ΠΣΠ[δ], because eventually hitting set for Σ ∧ ΣΠ[δ] is1345

known. However we could not de-border Σ ∧ ΣΠ[δ], because the duality-trick fails to1346

give an ARO. This whole paradigm suggests that de-bordering may be harder than1347

derandomization.1348
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