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DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC
CIRCUITS*

PRANJAL DUTTAT, PRATEEK DWIVEDI}, AND NITIN SAXENAS

Abstract. Border complexity of polynomials plays an integral role in the GCT (Geometric
complexity theory) approach to P # NP. It tries to formalize the notion of ‘approximating a polyno-
mial’ via limits (Blirgisser FOCS’01). This raises the open question VP z VP, as the approximation
involves exponential precision which may not be efficiently simulable. Recently (Kumar TOCT’20)

proved the universal power of the border of top fan-in two depth-3 circuits (E[Q]HE). Here we an-
swer some of the related open questions. We show that the border of bounded top fan-in depth-3

circuits (ZIFITIX for constant k) is relatively easy—it can be computed by a polynomial size algebraic
branching program (ABP). There were hardly any de-bordering results known for prominent models
before our result.

Moreover, we give the first quasipolynomial-time black-box identity test for the same. Prior best
construction was in PSPACE (Forbes,Shpilka STOC’18). Also, with more technical work, we extend
our results to restricted depth-4 circuits. Our de-bordering paradigm is a multi-step process; in short

we call it DiDIL —divide, derive, induct, with limit. It ‘almost’ reduces SIFIIIY to special cases of
read-once oblivious algebraic branching programs (ROABPS) in any-order.

Key words. approximative, border, depth-3, depth-4, circuits, de-border, derandomize, black-
box, PIT, GCT, any-order ROABP, ABP, VBP, VP, VNP.

AMS subject classifications. 32A05, 32A40, 68W30, 68Q15, 68Q25

1. Introduction: Border complexity, GCT and beyond. Algebraic circuits
are a natural and a non-uniform model of polynomial computation, which forms the
basis for the vast study of algebraic complexity. We say that a polynomial f €
Flxq,...,xy,], over a field F is computable by a circuit of size s and depth d if there
exists a directed acyclic graphs of size s (nodes + edges) and depth d such that its leaf
nodes are labelled by variables or field constants, internal nodes are labelled with +
and X, and the polynomial computed at the root is f. Further, if the output of a gate
is never re-used then it is a Formula. Any formula can be converted into a layered
graph called Algebraic Branching Program (ABP). Various complexity measures can
be defined on the computational model to classify polynomials in different complexity
classes. For example VP (respectively VBP, respectively VF) is the class of polynomials
of polynomial degree, computable by polynomial-sized circuits (respectively ABPs,
respectively formulas). Finally, VNP is the class of polynomials which can be expressed
as an exponential-sum of projection of a VP circuit family. For more details, refer
to subsection 2.1 and [119, 113, 86].

The problem of separating algebraic complexity classes has been a central theme
of this study. As an algebraic analog of P vs. NP problem, Valiant [119] conjectured
that VBP # VNP and further strengthened it by conjecturing VP # VNP. Over the
years, impressive progress has been made towards resolving this, however, the existing
tools have not been able to resolve this conclusively. Towards settling these conjectures
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2 P. DUTTA, P. DWIVEDI AND N. SAXENA

Mulmuley and Sohoni [92] introduced Geometric Complexity Theory (GCT) program.
In this program, they studied the border (or approximative) complexity, with the aim
of approaching Valiant’s conjecture and strengthening it to: VNP ¢ VBP, or equiva-
lently, the padded permanent does not lie in the orbit closure of ‘small’ determinants.
This notion was already studied in the context of designing matrix multiplication al-
gorithms [116, 17, 18, 36, 82]. The hope, in the GCT program, was to use tools from
algebraic geometry and representation theory, and possibly settle the question once
and for all. This also gave a natural reason to understand the relationship between
VP and VP (or VBP and VBP).

In addition to the VP vs. VNP implication, GCT has deep connections with com-
putational invariant theory [50, 90, 53, 29, 69], algebraic natural proofs [57, 21, 34, 79],
lower bounds [30, 56, 82], optimization [8, 28] and many more. We refer to [31, Sec. 9]
and [90, 91] for expository references.

The simplest notion of the approximative closure comes from the following defini-
tion [25, 26]: a polynomial f(x) € Flxy,...,x,] is approximated by g(x,¢) € F(e)[x]
if there exists a Q(x,¢e) € F[e][x] such that ¢ = f + Q. When F = R, and under
FEuclidean topology, we can analytically think of approximation as lim._,g g = f. If g
belongs to a circuit class C (over F(¢), i.e. any arbitrary e-power is allowed as ’cost-free’
constants), then we say that f € C, the approximative closure of C. Further, one could
draw parallels with algebraic definition of Zariski closure that works over every field,
i.e. taking the closure of the set of polynomials (considered as points) of C: Let Z be
the smallest (annihilating) ideal whose zeros cover {coefficient-vector of g | g € C};
then put in C each polynomial f with coefficient-vector being a zero of Z. Interest-
ingly, all these notions are equivalent over the algebraically closed field (refer [25,
Theorem 2.4] and [94, §2.C]).

The size of the circuit computing g defines the approzimative (or border) com-
plexity of f, denoted size(f); evidently, size(f) < size(f). Due to the possible 1/eM
terms in the circuit computing g, evaluating it at € = 0 may not be necessarily valid
(though the limit exists). Hence, given f € C, does not immediately reveal anything
about the exact complexity of f. Since g(x,¢) = f(x) + ¢ - Q(x,¢), we could extract
the coefficient of €° from g using the standard interpolation trick, by setting random
e-values from FF. However, the trivial bound on the circuit size of f would depend
on the degree M of €, which could provably be exponential in the size of the circuit
computing g, i.e. size(f) < size(f) < exp(size(f)) [25, Thm. 5.7].

1.1. De-bordering: The upper bound results. The major focus of this
paper is to address the power of approximation in the restricted circuit classes. Given
a polynomial f € C, for an interesting class C, we want to upper bound the exact
complexity of f (we call it ‘de-bordering’). If C = C, then C is said to be closed under
approximation: For example 1) XII, sparse polynomials (with complexity measure
being sparsity), 2) Monotone ABPs [22], and 3) ROABP (read-once ABP) and ARO
(any-order ROABP), with measure being the width. ARO is an ABP with a natural
restriction on the use of variables per layer; for definition and a formal proof, see
Definition 2.8 and Lemma 2.22.

Why care about upper bounds? One of the fundamental questions in the GCT

paradigm is whether VP Zvp [91, 58]. Confirmation or refutation of this question
has multiple consequences, both in the algebraic complexity and at the frontier of
algebraic geometry. If VP = VP, then any proof of VP # VNP will in fact also
show that VNP ¢ VP, as conjectured in [90]; however a refutation would imply that
any realistic approach to the VP vs. VNP conjecture would even have to separate
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DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC CIRCUITS 3

the permanent from the families in VP\VP (and for this, one needs a far better
understanding than the current state of the art).

The other significance of the upper bound result arises from the flip [89, 90] whose
basic idea in a nutshell is to understand the theory of upper bounds first, and then use
this theory to prove lower bounds later. Taking this further to the realm of algorithms:
showing de-bordering results, for even restricted classes (for example depth-3, small-
width ABPs), could have potential identity testing implications. For details, see
subsection 1.2.

De-bordering results in GCT are in a very nascent stage; for example, the bound-
ary of 3 x 3 determinants was only recently understood [68]. Note that here both the
number of variables n and the degree d are constant. In this work, however, we target
polynomial families with both n and d unbounded. So getting exact results about
such border models is highly nontrivial considering the current state of the art.

De-bordering small-width ABPs. The exponential degree dependence of e [25, 26]
suggests us to look for separation of restricted complexity classes or try to upper bound
them by some other means. In [24], the authors showed that VBPy C VBPy = VF ;
here VBP; denotes the class of polynomials computed by width-2 ABP. Surprisingly,
we also know that VBPy; C VF = VBP3 [13, 9]. Very recently, [22] showed polynomial
gap between ABPs and border-ABPs, in the trace model, for noncommutative and
also for commutative monotone settings (along with VQP # VNP).

Quest for de-bordering depth-3 circuits. Outside such ABP results and depth-
2 circuits, we understand very little about the border of other important models.
Thus, it is natural to ask the same for depth-3 circuits, plausibly starting with depth-
3 diagonal circuits (XAX), i.e. polynomials of the form Zie[s] c; - 19, where £; are
linear polynomials. Interestingly, the relation between Waring rank (minimum s to
compute f) and border Waring rank (minimum s, to approximate f) has been studied
in mathematics for ages [117, 23, 15, 54], yet it is not clear whether the measures are
polynomially related or not. However, we point out that ¥AY has a small ARO; this
follows from the fact that ¥AX has small ARO by the duality trick [106], and ARO
is closed under approximation [95, 46]; for details see Lemma 2.23.

This pushes us further to study depth-3 circuits SFTIIY; these circuits compute
polynomials of the form f = Zie[k] Hje[d] £;; where ¢;; are linear polynomials. This
model with bounded fan-in has been a source of great interest for derandomization
[43, 74, 71, 109, 6]. In a recent twist, Kumar [78] showed that border depth-3 fan-
in two circuits are ‘universally’ expressive; i.e. SRITIIPIY over C can approximate
any homogeneous d-degree, n-variate polynomial; though his expression requires an
exceedingly large D = exp(n,d).

Our upper bound results. The universality result of border depth-3 fan-in three
circuits makes it imperative to study ZR2ITI4Y, for d = poly(n) and understand its
computational power. To start with, are polynomials in this class even ‘explicit’
(i.e. the coefficients are efficiently computable)? If yes, is LRI, C VNP? (See
[58, 98] for more general questions in the same spirit.) To our surprise, we show that
the class is very explicit; in fact every polynomial in this class has a small ABP. The
statement and its proof is first of its kind which eventually uses analytic approach
and ‘reduces’ the II-gate to A-gate. We remark that it does not reveal the polynomial
dependence on the e-degree. However, this positive result could be thought as a baby
step towards VP = VP. We assume the field F characteristic to be = 0, or large
enough. For a detailed statement, see Theorem 3.2.

This manuscript is for review purposes only.



138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154

—

ot

oo

o ot ot Ut Ot
~

J—
)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

4 P. DUTTA, P. DWIVEDI AND N. SAXENA

THEOREM 1.1 (De-bordering depth-3 circuits). For any constant k, SKIIY C
VBP, i.e. any polynomial in the border of constant top fan-in size-s depth-3 circuits,
can also be computed by a poly(s)-size algebraic branching program (ABP).

Remarks. 1. When k = 1, it is easy to show that 11X = IIX [24, Prop. A.12] (see
Lemma 2.21).

2. The size of the ABP turns out to be s*P(¥) Tt is an interesting open question
whether f € SFIIIY has a subexponential ABP when k = O(log s).

3. YIKIIY is the orbit closure of k-sparse polynomials [87, Thm. 1.31]. Under-
standing the orbit and its closure of certain classes is at the core of the GCT program.
Theorem 1.1 is one of the first results that deborder orbit closures, in particular closure
of constant-sparse polynomials.

Extending to depth-4. Once we have dealt with depth-3 circuits, it is natural
to ask the same for constant top fan-in depth-4 circuits. Polynomials computed by
SFEIXIP circuits are of the form f = >ien L1 935 where deg(g;;) < 6. Unfor-
tunately, our technique cannot be generalised to this model, primarily due to the
inability to de-border XAXIIN!. However, when the bottom II is replaced by A, we
can show XFIIXA C VBP; we sketch the proof in Theorem 5.1.

1.2. Derandomizing the border: The black-box PITs. Polynomial Iden-
tity Testing (PIT) is one of the fundamental decision problems in complexity theory.
The Polynomial Identity Lemma [99, 38, 121, 111] gives an efficient randomized al-
gorithm to test the zeroness of a given polynomial, even in the black-box settings
(known as Black-box PIT), where we are not allowed to see the internal structure
of the model (unlike the 'whitebox’ setting), but evaluations at points are allowed.
It is still an open problem to derandomize black-box PIT. Designing a deterministic
black-box PIT algorithm for a circuit class is equivalent to finding a set of points such
that for every nonzero circuit, the set contains a point where it evaluates to a nonzero
value [47, Sec. 3.2]. Such a set is called hitting set.

A trivial explicit hitting set for a class of degree d polynomial of size O(d™) can be
obtained using the Polynomial Identity Lemma. Heintz and Schnorr [67] showed that
poly(s,n,d) size hitting set exists for d-degree, n-variate polynomials computed (as
well as approximated) by circuits of size s. However, the real challenge is to efficiently
obtain such an explicit set.

Constructing small size explicit hitting set for VP is a long standing open prob-
lem in algebraic complexity theory, with numerous algorithmic applications in graph
theory [85, 93, 45], factoring [77, 41], cryptography [5], and hardness vs random-
ness results [67, 96, 1, 70, 44, 42]. Moreover, a long line of depth reduction results
[120, 7, 76, 118, 64] and the bootstrapping phenomenon [3, 81, 61, 10] has justified the
interest in hitting set construction for restricted classes; e.g. depth 3 [43, 74, 109, 6],
depth 4 [51, 12, 48, 112, 100, 101, 39], ROABPs [4, 66, 51, 60, 19] and log-variate
depth-3 diagonal circuits [49]. We refer to [113, 107, 80] for expositions.

PIT in the border. In this paper we address the question of constructing hitting
set for restrictive border circuits. H is a hitting set for a class C, if g(x,¢) € Cr(e)s
approximates a non-zero polynomial f(x) € C, then Ja € H such that g(a,e) & -Fe],
i.e. f(a) # 0. Note that, as H will also ‘hit’ polynomials of class C, construction of
hitting set for the border classes (we call it ‘border PIT’) is a natural and possibly
a different avenue to derandomize PIT. Here, we emphasize that a € F™ such that
g(a,e) # 0, may not hit the limit polynomial f since g(a, €) might still lie in ¢ - Fle];
because f could have really high complexity compared to g. Intrinsically, this property
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DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC CIRCUITS 5

makes it harder to construct an explicit hitting set for VP.

We also remark that there is no ‘whitebox’ setting in the border and thus we
cannot really talk about ‘¢-time algorithm’; rather we would only be using the term
‘t-time hitting set’, since the given circuit after evaluating on a € F™, may require
arbitrarily high-precision in F(e).

Prior known border PITs. Mulmuley [91] asked the question of constructing an
efficient hitting set for VP. Forbes and Shpilka [52] gave a PSPACE algorithm over the
field C. In [62], the authors extended this result to any field. Very few better hitting
set constructions are known for the restricted border classes, for example poly-time
hitting set for IIX = IIY [14, 75], quasi-poly hitting set for LAY € ARO € ROABP
[51, 4, 66] and poly-time hitting set for the border of a restricted sum of log-variate
ROABPs [19].

Why care about border PIT? PIT for VP has a lot of applications in the context
of algebraic geometry and computational complexity, as observed by Mulmuley [91].
For example Noether’s Normalization Lemma (NNL); it is a fundamental result in
algebraic geometry where the computational problem of constructing explicit nor-
malization map reduces to constructing small size hitting set of VP [91, 50]. Close
connection between certain formulation of derandomization of NNL, and the problem
of showing explicit circuit lower bounds is also known [91, 88].

The second motivation comes from the hope to find an explicit ‘robust’ hitting
set for VP [52]; this is a hitting set H such that after an adequate normalization,
there will be a point in H on which f evaluates to (say) 1. This notion overcomes
the discrepancy between a hitting set for VP and a hitting set for VP [52, 87]. We
know that small robust hitting set exists [32], but an explicit PSPACE construction
was given in [52]. It is not at all clear whether the efficient hitting sets known for
restricted depth-3 circuits are robust or not.

Our border PIT results. We continue our study on LIFIIIAY and ask for
a better than PSPACE constructible hitting set. A polynomial-time hitting set is
known for LIy [108, 109, 6]. But, the border class seems to be more powerful,
and the known hitting sets seem to fail. However, using our structural understanding
and the analytic technique, we are able to quasi-derandomize the class completely.
For the detailed statement, see Theorem 4.1.

THEOREM 1.2 (Quasi-derandomizing depth-3). There exists an explicit quasi-

polynomial time (s°1°81°89) ) hitting set for SIKIIN-circuits of size s and constant
k.

Remarks. 1. For k = 1, as IIX = IIX, there is an explicit polynomial-time hitting set.

2. Our technique necessarily blows up the size to s™P(k)loglogs — Therefore, it
would be interesting to design a subexponential time algorithm when k& = ©(log s); or
poly-time for £ = O(1).

3. We can not directly use the de-bordering result of Theorem 1.1 and try to find
efficient hitting set, as we do not know explicit good hitting set for general ABPs.

4. One can extend this technique to construct quasi-polynomial time hitting set
for depth-4 classes: LIFITIXA and SIFIISTIE], when k and § are constants. For details,
see section 6.

The log-variate regime. In recent developments [3, 81, 61, 42] low-variate poly-
nomials, even in highly restricted models, have gained a lot of interest and attention
for their general implications in the context of derandomization and hardness results.
A slightly non-trivial hitting set for trivariate SIIXA-circuits [3, Theorem 4] would

This manuscript is for review purposes only.



234
235
236
237
238
239
240
241
242
243
244
245
246
247

6 P. DUTTA, P. DWIVEDI AND N. SAXENA

in fact give a PIT algorithm for general circuits that runs in quasipolynomial time.
With a hardness hypothesis [61, Theorem 1.6] optimizes the algorithm to polynomial
time. This motivation has pushed researchers to work on log-variate regime and de-
sign efficient PITs. In [49], the authors showed a poly(s)-time black-box identity test
for n = O(log s) variate size-s circuits that have poly(s)-dimensional partial deriv-
ative space; for example log-variate depth-3 diagonal circuits. Very recently, Bisht
and Saxena [19] gave the first poly(s)-time black-box PIT for sum of constant-many,
size-s, O(log s)-variate constant-width ROABPs (and its border).

We remark that non-trivial border-PIT in the low-variate bootstraps to non-trivial
PIT for VP as well [3, 61]. That motivates us to derandomize log-variate SIKITI3-
circuits. Unfortunately, direct application of Theorem 1.2 fails to give a polynomial-
time PIT. Surprisingly, adapting techniques from [49] to extend the existing result
(Theorem 4.3), combined with our DiDIL technique, we prove the following. For
details, see Theorem 4.4.

THEOREM 1.3 (Derandomizing log-variate depth-3).  There exists an explicit

poly(s)-time hitting set for n = O(log s) variate, size-s, SIKIIY circuits, for constant
k.

1.3. Limitation of standard techniques. In this section, we briefly discuss
about the standard techniques for both the upper bounds and PITs, in the border
sense, and point out why they fail to yield our results.

Why known upper bound techniques fail? One of the most obvious way to
de-border restricted classes is to essentially show a polynomial e-degree bound and
interpolate. In general, the bound is known to be exponential [26, Thm. 5.7] which
crucially uses [83, Prop. 1]. This proposition essentially shows the existence of an
irreducible curve C whose degree is bounded in terms of the degree of the affine variety
that we are interested in. The degree is in general exponentially upper bounded by
the size [27, Thm. 8.48]. Unless and until one improves these bounds for varieties
induced by specific models (which seems hard), one should not expect to improve the
e-degree bound, and thus the interpolation trick seems useless.

As mentioned before, X AX-circuits could be de-bordered using the duality trick
[106] (see Lemma 2.16) to make it an ARO and finally using Nisan’s characterization
giving ARO = ARO [95, 46, 66] (Lemma 2.22). The trick is directly inapplicable to
our model of interest, primarily due to the expected exponential blow in the top fan-
in to convert the II-gate to A-gate. We also remark that the duality trick was made
field independent in [47, Lemma 8.6.4]. In fact, very recently, [20, Theorem 4.3] gave
an improved duality trick with no size blowup, independent of degree and number of
variables.

Due to possibly heavy cancellation of e-powers, all the non-trivial upper bound
methods currently known for border complexity classes seems to not work for L2IIIY
(vefer [46, 24]). To elaborate, one of the major bottleneck is that individually limit
of T; as e — 0, for i € [2] may not exist, however, lim._,o(T} + T2) does exist, where
T; € IIX (over F(g)[z]). For example Ty := e~ (z + ?y)y and Tp := —e 1 (y + ex)x.
No generic tool is available to ‘capture’ such cancellations, and may even suggest a
non-linear algebraic approach to tackle the problem.

Furthermore, [102] explicitly classified certain factor polynomials to solve non-
border LITIXA PIT. This factoring-based idea seems to fail miserably when we study
factoring mod (¢™); in that case, we get non-unique, usually exponentially-many,
factorizations. For example 22 = (z —a - e™/?) - (2 + a-eM/?) mod (M); for all

This manuscript is for review purposes only.



W w
[CENCENCEECENG)
TR W N =

w

5

327
328
329
330

DEMYSTIFYING THE BORDER OF DEPTH-3 ALGEBRAIC CIRCUITS 7

a € F. In this case, there are, in fact, infinitely many factorizations. Moreover,
lim. o 1/eM - (22 — (x —a-eM/?) - (z + a-eM/?)) = a®. Therefore, infinitely many
factorizations may give infinitely many limits. To top it all, Kumar’s result [78]
hinted a possible hardness of border-depth-3 (top fan-in two). In that sense, ours is
a very non-linear algebraic proof for restricted models which successfully opens up a
possibility of finding non-representation-theoretic, and elementary, upper bounds.

Why known PIT techniques fail? Once we understand XIIIY, it is natural
to look for efficient derandomization. However, as we do not know efficient PIT for
ABPs, known techniques would not yield an efficient PIT for the same. Further,
in a nutshell—1) limited (almost non-existent) understanding of linear/algebraic de-
pendence under limit, 2) exponential upper bound on ¢, and 3) not-good-enough
understanding of restricted border classes make it really hard to come up with an
efficient hitting set. We elaborate these points below.

Dvir and Shpilka [43] gave a rank-based approach to design the first quasipoly-
nomial time algorithm for FITIY. A series of works [73, 108, 109, 110] finally gave
a s?F)_time algorithm for the same. Their techniques depend on either generaliz-
ing Chinese remaindering (CR) via ideal-matching or certifying paths, or via efficient
variable-reduction, to obtain a good enough rank-bound on the multiplication (IIX)
terms. Most of these approaches required a linear space, but possibility of exponen-
tial e-powers and non-trivial cancellations make these methods fail miserably in the
limit. Similar obstructions also hold for [87, 103, 16] which give efficient hitting sets
for the orbit of sparse polynomials (which is in fact dense in XIIX). In particular,
Medini and Shpilka [87] gave PIT for the orbits of variable disjoint monomials (see
[87, Defn. 1.29]), under the affine group, but not the closure of it. Thus, they do not
even give a subexponential PIT for ST

Recently, Guo [59] gave a 9" time PIT, for non-SG (Sylvester-Gallai) SFITISTIC)
circuits, by constructing explicit variety evasive subspace families; but to apply this
idea to border PIT, one has to devise a radical-ideal based PIT idea. Currently, this
does not work in the border, as ¢ mod (¢™) has an exponentially high nilpotency.
Since radical(eM) = (¢), it ’kills’ the necessary information unless we can show a
polynomial upper bound on M.

Finally, [6] came up with faithful map by using Jacobian + certifying path tech-
nique, which is more about algebraic rank rather than linear-rank. However, it is
not at all clear how it behaves in the limit as € goes to zero. For example f; =
1 +eM x5, and fy = x1, where M is arbitrary large. Note that the underlying
Jacobian J(f1, f2) = €M is nonzero; but it flips to zero in the limit. This makes the
whole Jacobian machinery collapse in the border setting; as it cannot possibly give a
variable reduction for the border model. (for example one needs to keep both z; and
x9 above.)

Very recently, [39] gave a quasipolynomial time hitting set for exact SHEILA
and SFITIXITC circuits, when k and 6 are constant. This result is dependent on the
Jacobian technique which fails under taking limit, as mentioned above. However, a
polynomial-time whitebox PIT for Z*IISA circuits was shown using DiDI-technique
(Divide, Derive and Induct). This cannot be directly used because there was no
e (i.e. without limit) and SIFITIXA has only black-box access. Further, Theorem 1.1
gives an ABP, where DiDI-technique cannot be directly applied. Therefore, our DiDIL-
technique can be thought of as a strict generalization of the DiDI-technique, first
introduced in [39], which now applies to uncharted borders.

In a recent breakthrought result, Limaye, Srinivasan and Tavenas [84] showed
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8 P. DUTTA, P. DWIVEDI AND N. SAXENA

the first superpolynomial lower bound for constant-depth circuits. Their lower bound
result, together with the ‘hardness vs randomness’ tradeoff result of [35] gives the first
deterministic subexponential-time black-box PIT algorithm for general constant-depth
circuits. Interestingly, these methods can be adapted in the border setting as well [11].
However, compared to their algorithms, our hitting sets are significantly faster!

1.4. Main tools and a brief road-map. In this section, we sketch the proof of
Theorems 1.1-1.3. The proofs are analytic, based on induction on the top fan-in and
rely on a common high level picture. They use logarithmic derivative, and its power-
series expansion; we call the unifying technique as DiDIL (Di = Divide, D=Derive, I
= Induct, L = Limit). We essentially reduce to the well-known ‘wedge’ models (as
fractions, with unbounded top fan-in) and then ‘interpolate’ it (for Theorem 1.1) or
deduce directly about its nonzeroness (Theorem 1.2-1.3).

Basic tools and notations. The analytic tool that we use, appears in algebra (and
complexity theory) through the ring of formal power series R[[x1,...,z,]] (in short
R][x]]), see [97, 41, 114]. One of the advantages of the ring R[[x]] emerges from
the following inverse identity: (1 —x1)~! = Y_,5, }, which does not make sense
in R[z], but is available now. Lastly, the logarithmic derivative operator dlog,(f) =
(0yf)/ f plays a very crucial role in ‘linearizing’ the product gate, since dlog, (f -g) =

9y(f9)/(fg) = (f-9yg + g-0yf)/(fg) = dlog,(f) + dlog,(g). Essentially, this
operator enables us to use power-series expansion and converts the [[-gate to A.

The road-map. The base case when the top fan-in k£ = 1, i.e., we have a single
product of affine linear forms, and we are interested in its border. It is not hard
to see that the polynomial in the border is also just a product of appropriate affine
forms; for details refer to section 3). Now, suppose we have a depth-3 circuit of top
fan-in 2, g(x,e) = Ty + T, where each T; is a product of affine linear forms. The goal
is to somehow reduce this to the case of single summand. Before moving forward,
we remark that some ideas described below, directly, can even be formally incorrect!
Nonetheless, this sketch is “morally’ correct and, the eventual road-map insinuates
the strength of the DiDIL-technique.

For simplicity, let us assume that each linear form has a non-zero constant term
(for instance by a random translation of the variables). Moreover, every variable x; is
replaced by x; - z for a new variable z; this variable z is the ‘degree counter’ that helps
to keep track of the degree of the polynomials involved. Now, dividing both sides by
Ty, we get g/T1 = 1+ T /Ty, and taking derivatives with respect to the variable z, we
get 0,(g/T1) = 0.(T»/T1). This has reduced the number of summands on the right
hand side to 1, although each summand has become more complicated now, and we
have no control on what happens as € — 0.

Since T3 is invertible in the power series ring in z, 75 /T is well defined as well.
Moreover, lim._,q T} exists (well not really, but formally a proper e-scaling of it does,
which suffices since derivarive with respect to z does not affect the e-scaling!) and is
non-zero. From this it follows that after some truncation with respect to high degree
z monomials, lim._,q 9,(T>/T7) exists and has a nice relation to the original limit of
g; see Claim 3.4!

Lastly, and crucially, 9, (T/T1) mod z?% = (Ty/T})-dlog(T2/T1) mod 2% can be
computed by a not-too-complicated circuit structure. Interestingly, the circuit form is
closed under this operation of dividing, taking derivatives and taking limits! Note that
the dlog operator distributes the product gate into summation giving dlog(T»/T1) =
> dlog(X), where ¥ denotes linear polynomials, and we observe that dlog(¥) = X/¥ €
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YAY, the depth-3 powering circuits, over some ‘nice’ ring. The idea is to expand 1/,
where /¢ is a linear polynomial, as sum of powers of linear terms using the inverse
identity:

1/l-a-2)=1+a-z+-+a® 12971 mod 27.

When there is a single remaining summand, the border of the more general struc-
ture is easy-to-compute, and can be shown to have an algebraic branching program of
not too large size. For details, we refer to Claim 3.6. For a constant k (& even gen-
eral bounded depth-4 circuits), the above idea can be extended with some additional
clever division and computation.

The PIT results also have a similar high level strategy, although there are addi-
tional technical difficulties which need some care at every stage. At the core, the idea is
really “primal” and depends on the following: If a bivariate polynomial G(X, Z) # 0,
then either its derivative 0z G(X,Z) # 0, or its constant-term G(X,0) # 0 (note:
G(X,0) =G mod Z). So, if G(a,0) # 0 or 9zG(b, Z) # 0, then the union-set {a, b}
hits G(X, Z), i.e. either G(a,Z) # 0 or G(b, Z) # 0.

2. Preliminaries. In this section, we describe some of the assumptions and
notations used throughout the paper.

Notation. We use [n] to denote the set {1,...,n}, and * = (x1,...,2,). For,
a = (a,...,a,),b = (b1,...,b,) € F", and a variable ¢, we denote a + ¢ -b :=
(a1 +tby, ... apn + thy).

We also use F[[z]], to denote the ring of formal power series over F. Formally,
[ =50 ciz’, with ¢; € F, is an element in F[[z]]. Further, F(z) denotes the function
field, where the elements are of the form f/g, where f,g € F[z] (g # 0).

Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative
dlog, : R[y] — R(y) is defined as dlog,(f) := 0, f/f; here 0, denotes the partial
derivative with respect to variable y. One important property of dlog is that it is

additive over a product as dlog, (f-g) = 9,(f9)/(fg9) = (f-9yg + g-0,f)/(fg) =
dlog, (f) + dlog,(g). [dlog linearizes product]

Valuation. Valuation is a map val, : Rly] — Z>¢, over a ring R, such that val,(-)
is defined to be the maximum power of y dividing the element. It can be easily
extended to fraction field R(y), by defining val,(p/q) := val,(p) — val,(q); where it
can be negative.

Field. We denote the underlying field as F and assume that it is of characteristic 0
(for example Q,Q,). All our results hold for other fields (for example Fpe) of large
characteristic p.

Approximative closure. For an algebraic complexity class C, the approximation is
defined as follows [24, Def. 2.1].

DEFINITION 2.1 (Approximative closure of a class). Let Cp be a class of poly-

nomials defined over a field F. Then, f(x) € Flzy,...,x,] is said to be in Ap-
prozimative Closure C if and only if there exists polynomial Q € Fle, | such that
g(x,e) = f(x) +c-Q(z,¢) is in Cr(c).
Cone-size of monomials. For a monomial x®, the cone of & is the set of all
sub-monomials of £®. The cardinality of this set is called cone-size of ®. It equals
[Licpn (@i + 1), where @ = (ai,..., a,). We will denote cs(m), as the cone-size of the
monomial m.

Partial Derivative Space of a polynomial f is a vector space formed by considering
all possible linear combinations of partial derivatives of f, of all orders. The definition
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10 P. DUTTA, P. DWIVEDI AND N. SAXENA

naturally extends to a set of polynomials. Here is an important lemma, originally from
[47, Corollary 4.14], which shows that small partial derivative space implies existence
of small cone-size monomial. For a detailed proof, we refer [55, Lemma 2.3.15]

THEOREM 2.2 (Cone-size concentration). Let F be a field of characteristic 0 or
greater than d. Let P be a set of n-variate d-degree polynomials over F such that for
all P € P, the dimension of the partial derivative space of P is at most k. Then every
nonzero P € P has a cone-size-k monomial with nonzero coefficient.

The next lemma shows that there are only few low-cone monomials in a non-zero
n-variate polynomial.

LEMMA 2.3 (Counting low-cones, [49, Lemma 5]).  The number of n-variate
monomials with cone-size at most k is O(rk?), where r := (3n/ log k)'°e*.

The following lemma can be proved using multi-variate interpolation.

LEMMA 2.4 (Coefficient extraction, [49, Lemma 4]). Given a circuit C, over
the underlying field F(e), and a monomial m, there is a poly(size(C), cs(m),d) time
algorithm to compute the coefficient of m in C, where cs(m) denotes the cone-size of
m.

2.1. Basics of algebraic complexity. We will give a brief definition of various
computational models and tools used in our results. Interested readers can refer
[113, 47, 105] for more refined versions.

Algebraic Circuits, defined over a field IF, are directed acyclic graphs with a unique
root node. The leaf nodes of the graph are labelled by variables or field constants
and internal nodes are either labelled with 4+ or x. Further the edges can be labelled
by field constants to denote scaler multiplication. The circuit naturally computes the
polynomial at the root node from bottom to top. The size and depth of circuit is the
size and depth of the underlying graph.

Circuit size. Some of the complexity parameters of a circuit are depth (number of
layers), and fan-in (maximum number of inputs to a node). Syntactic degree of a
circuit is defined inductively as follows: Syntactic degree of a leaf is 0 for constants,
and 1 for input variables. Syntactic degree of a sum-gate is the maximum of the
syntactic degree of its children, moreover, for the product-gate it is the sum of the
syntactic degree of its children.

Operation on Complexity Classes. For base classes C and D over ring R, a
bloated class consists of polynomials from the base classes in any combination of sum,
product, and division. For instance, C/D = {f/g : f € C,0 # g € D} similarly
C - D for products, C + D for sum, and other possible combinations. The respective
computational model for the bloated class is referred to as 'bloated model’ in the
following text. Also we use Cr to denote the basic ring R on which C is being computed
over.

Hitting set. A set of points H C F" is called a hitting set for a class C of n-variate
polynomials if for any nonzero polynomial f € C, there exists a point in ‘H where f
evaluates to a nonzero value. A T'(s)-time hitting set would mean that the hitting set
can be generated in time < T'(s), for input circuit of size s.

DEFINITION 2.5 (Algebraic Branching Program (ABP)). ABP is a computational
model which is described using a layered graph with a source vertex s and a sink
vertex t. All edges connect vertices from layer i to i + 1. Further, edges are labelled
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by univariate polynomials. The polynomial computed by the ABP is defined as

f= >, wt(y)

path y:s~t

where wt(7) is product of labels over the edges in path 4. The number of layers (A)
defines the depth and the maximum number of vertices in any layer (w) defines the
width of an ABP. The size (s) of an ABP is the sum of the graph-size and the degree of
the univariate polynomials that label. If d is the maximum degree of univariates then
s < dw?A: in fact, we will take the latter as the ABP-size bound in our calculations.

We remark that ABP is closed under both addition and multiplication, which is
straightforward from the definition. In fact, we also need to eliminate division in
ABPs. Here is an important lemma stated below from [115].

LEMMA 2.6 (Strassen’s division elimination). Let g(x,y) and h(z,y) be com-
puted by ABPs of size s and degree < d. Further, assume h(x,0) # 0. Then,
g/h mod y? can be written as szz_ol C;-yt, where each C; is of the form ABP/ABP
of size O(sd?).

Moreover, in case g/h is a polynomial, then it has an ABP of size O(sd?).

Proof. ABPs are closed under multiplication, which makes interpolation, with
respect to y, possible. Interpolating the coefficient C;, of y?, gives a sum of d
ABP/ABP’s; which can be rewritten as a single ABP/ABP of size O(sd?).

Next, assume that g/h is a polynomial. For a random (a,ag) € F"T! write
h(x + a,y + ag) =: h(a,ag) — h(z,y) and define ¢’ := g(z + a,y + ao). Since h(x,y)
is a non-zero polynomial, a random evaluation point such as (a, ag), guarantees that
field element h(a,ap) # 0, and h € (z,y). Of course, h has a small ABP. Using the

inverse identity in F[[z, y]], we have g(x + a,y + ao)/h(x + a,y + ag) =

(9'/(a,a0))/(1 = h/h(a,a0)) = (¢'/h(a,a))- | Y (h/h(a,a0))" | mod (z,y)*.

0<i<d

Note that, the degree blowsup in the above summands to O(d?) and the ABP-size is
O(sd). ABPs are closed under addition/ multiplication; thus, we get an ABP of size
O(sd?) for the polynomial g(z+a,y+ao)/h(x+a,y+ag). This implies the ABP-size
for g/h as well. 0

Our interest primarily is in the following two ABP-variants: ROABP and ARO.

DEFINITION 2.7 (Read-once Oblivious Algebraic Branching Program (ROABP)).
An ABP is defined as Read-Once Oblivious Algebraic Branching Program (ROABP)
in a variable order (Tq(1),...,Tom)) for some permutation o : [n] — [n], if edges of
i-th layer of ABP are univariate polynomials in x, ;).

DEFINITION 2.8 (Any-order ROABP (ARO)). A polynomial f € Flx] is com-

putable by ARO of size s if for all possible permutation of variables there exists a
ROABP of size at most s in that variable order.

2.2. Properties of any-order ROABP (ARO). We will start with defining
the partial coefficient space of a polynomial f to 'characterise’ the width of ARO. We
can work over any field F.

Let A(x) be a polynomial over F in n variables with individual degree d. Denote
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12 P. DUTTA, P. DWIVEDI AND N. SAXENA
the set M := {0, ...,d}"™. Note that, one can write A(x) as

A(z) = Z coef 4 (%) - ™ .

Consider a partition of the variables & into two parts y and z, with |y| = k. Then,
A(x) can be viewed as a polynomial in variables y, where the coefficients are poly-
nomials in F[z]. For monomial y®, let us denote the coefficient of y* in A(x) by
Ary,a) € Flz]. The coefficient A, 4) can also be expressed as a partial derivative
0A/0y?*, evaluated at y = 0 (and multiplied by an appropriate constant), see [51,
Section 6]. Moreover, we can also write A(x) as

A(:c) = Z A(y,a) -ya .
ac{0,...,d}*

One can also capture the space by the coefficient matrix (also known as the partial
derivative matrix) where the rows are indexed by monomials p; from y, columns are
indexed by monomials ¢; from z = x\y and (i, j)-th entry of the matrix is coef,, ¢, (f).

The following lemma formalises the connection between ARO width and dimen-
sion of the coefficient space (or the rank of the coefficient matrix).

LEMMA 2.9 ([95]). Let A(x) be a polynomial of individual degree d, computed by
an ARO of width w. Let k <n and y be any prefix of length k of x. Then

dim]F{A(y’a) | a < {O,,d}k} < w.

We remark that the original statement was for a fixed variable order. Since, ARO
affords any-order, the above holds for any-order as well. The following lemma is the
converse of the above lemma and shows us that the dimension of the coefficient space
is rightly captured by the width.

LEMMA 2.10 (Converse lemma [95]). Let A(x) be a polynomial of individual
degree d with € = (x1,...,2,), such that for some w, for any 1 < k < n, and y,
any-order-prefix of length k, we have

dimp{Aya) | @ € {0,...,d}} < w.
Then, there exists an ARO of width w for A(x).

2.3. Properties of depth-3 diagonal circuits. In this section we will discuss
various properties of ¥AY circuits and basic Waring rank. The corresponding bloated
model is XAY/EAY, that computes elements of the form f/g, where f, g € EAX. The
following lemma gives us a sum of powers representation of monomial. For proofs see
[33, Proposition 4.3].

LEMMA 2.11 (Waring identity for a monomial [33]). Let M = a5 - .. xzk, where
1 <by <+ < by, and roots of unity Z(i) := {z € C: 2%+ = 1}. Then,

M = Z Ve @),y - (@1 +(2)T2 + .0+ e(k)ar)?
c(i)EZ(i):i=2, ,k
where d := deg(M) = by + -+ + bx, and Vo(),... () are HLQ (b; + 1) many scalars.

Remark. For fields other than F = C: We can go to a small extension (at most d*),
for a monomial of degree d, to make sure that () exists.
Using this, we show that XAX is closed under constant-fold multiplication.
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LEMMA 2.12 (XAY closed under multiplication). Let f; € Flx], of syntactic
degree < d;, be computed by a XAX circuit of size s;, for i € [k]. Then, f1--- fi has
EAX circuit of size O((da +1) -+ (dg + 1) - s1---5%).

Proof. Let f; =3 j ZZJ ; by assumption e;; < d;. Each summand of [[, f; after
expanding can be expressed as XAY using Lemma 2.11 of size at most (da+1) - - - (di+
1)- (Zie[k] size(&ji)). Summing up, for all s; - - - s, many products, gives the upper

bound. 0

Remark. The above lemma, and its proof, hold good for the more general YAXA
circuits.

Using the additive and multiplicative closure of ¥AY, we can show that XAY/XAY
is closed under constant-fold addition.

LEMMA 2.13 (ZAX/XAX closed under addition). Let f; € Flz], of syntactic
degree d;, be computable by XAL/EAY of size s;, for i € [k]. Then, Zie[k] fi has a
(XAX/ENAY) representation of size O(([[, di) - T1; s4)-

Proof. Let f; =: u;1/u;2, where u;; € XAY of size at most s;. Then

f:Zfi: ZUMHUJQ / HuiQ

i€[k] iclk] g i€[k]

Use Lemma 2.12 on each product-term in the numerator to obtain XAY of size
O((I1; di) - T1, si). Trivially, ¥AY is closed under addition; so the size of the nu-
merator is O(([], d;) - [, s;). Similar argument can be given for the denominator. O

Remark. The above holds for SAXA/SAXA circuits as well.
Using a simple interpolation, the coefficient of y¢ can be extracted from f(x,y) €
YAY again as a small ¥AY representation.

LEMMA 2.14 (XAY coefficient extraction). Let f(x,y) € Flx|[y] be computed by
a XAY circuit of size s and degree d. Then, coef e (f) € Flx] is a XAY circuit of size
O(sd), over F[x].

Proof sketch. Let f =: >, a; - 47", with e; < s and deg,(f) < d. Thus, write
f = Z?:o fi -y, where f; € Flz]. Interpolate using (d + 1)-many distinct points
y — a € F, and conclude that f; has a 3¥AY circuit of size O(sd). d

Like coefficient extraction, differentiation of XA circuit is easy too.

LEMMA 2.15 (XAX differentiation). Let f(x,y) € Flx][y] be computed by a TAE
circuit of size s and degree d. Then, 9, (f) is a LAY circuit of size O(sd?), over
Flz][y].

Proof sketch. Lemma 2.14 shows that each f. has O(sd) size circuit where f =:
>, fey©. Doing this for each e € [0, d] gives a blowup of O(sd?) and the representa-
tion: 9y (f) = >, fe-e -yt 0
Remark. Same property holds for AXA circuits.

Lastly, we show that YAX circuit can be converted into ARO. In fact, we give
the proof for a more general model YAXA. The key ingredient for the lemma is the
duality trick.

LEMMA 2.16 (Duality trick [106]). The polynomial f = (z1 + ...+ x,)? can be
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written as
F=" fal@) finlzn),
1€[t]
where t = O(nd), and f;; is a undvariate polynomial of degree at most d.
We remark that the above proof works for fields of characteristic = 0, or > d.

Now, the basic idea is to convert AXA into LIIX{DA (i.e. sum-of-product-of-
univariates) which is subsumed by ARO [65, Section 2.5.2].

LEMMA 2.17 (BXAXA as ARO). Let f € Flx] be an n-variate polynomial com-
putable by XAXNA circuit of size s and syntactic degree D. Then f is computable by
an ARO of size O(sn*D?).

Proof sketch. Let g¢ = (g1(x1) + -+ + gn(z,))¢, where deg(g;) - e < D. Using
Lemma 2.16 we get ¢g¢ = ZZ-O:(IW) hi1(z1) -+ - hin (), where each h;; is of degree at
most D.

We do this for each power (i.e. each summand of f) individually, to get the final

sum-of-product-of-univariates; of top fan-in O(sne) and individual degree at most D.
This is an ARO of size O(sne) - n - D < O(sn?D?). ad

2.4. Basic mathematical tools. For the time-complexity bound, we need to
optimize the following function:

LEMMA 2.18. Let k € N>y, and h(z) := z(k — x)7%. Then, max;ep—1) h(i) =
h(k —1).

Proof sketch. Differentiate to get h'(z) = (k—x)7* —27*+x(k—x)(log 7)7* = 7*-

2
[#2(—1og 7)+x(klog 7T—2)+k]. It vanishes at x = (% - 11327)—'_\/(5 B ﬁ) - %

. Thus, h is maximized at the integer x = k — 1.

Here is an important lemma to show that positive valuation with respect to vy,
lets us express a function as a power-series of y.

LEMMA 2.19 (Valuation). Let f € F(z,y) such that val,(f) > 0. Then, f €
F(a)][y]]

Proof sketch. Let f = g/h such that g,h € Flz,y]. Now, val,(f) > 0, implies
val,(g) > val,(h). Let val,(g) = di and val,(h) = da, where di > dy > 0. Further,
write g = y4 - § and h = y?2 - h. Write, h= ho +hiy + hay? + -+ + hgy?, for some
d; with h; € F[x]. Note that hg # 0. Thus

1
ho + hiy + - 4 hay?

f=yh.g.

oyttt 1 . ]
N hg 1 + (h1/ho)y + -+ (hd/ho)yd € F(z)[[y]]

2.5. De-bordering simple models. In this section we will discuss known de-
bordering results of restricted models like product of sum of univariates and ARO.

Polynomials approximated by II¥ can be easily de-bordered [24, Prop.A.12]. In
fact, it is the only constructive de-bordering result known so far. We extend it to
show that same holds for polynomials approximated by IIXA circuits. In fact, we
start it by showing a much more general theorem.

Let C and D be two classes over Flxz]. Consider the bloated-class (C/C) - (D/D),
which has elements of the form (g1/g2) - (h1/h2), where g; € C and h; € D (gahe # 0).
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One can also similarly define its border (which will be an element in F(x)). Here is
an important observation.

LeEmMA 2.20. (C/C)-(D/D) C (C/C) - (D/D).
Proof. Suppose (g1/g2) - h1/he = f+e-Q, where Q € F(x,¢e) and f € F(x). Let

valc(g;) =: a; and val.(h;) =: b;. Denote, g; =: €% - g;, similarly h;. Further, assume
Gi =: §; + € - §}; similarly for h;, we define h; € Flz]. Note that §; € C, similarly

iLl' € D. Then we have:

8a17a2+blfb2 . (‘?1> . <{ll> = f +e- Q
92 ha

Since lim,_,q exists, the exponent a; + by —as — by > 0. If it is greater than one, then
f = 0. Moreover, if a; + by — as — ba = 0, then

. i S
r=(2). () e €/0)- (D)D)
g2 h2
Now, we show an important de-bordering result on IIXA circuits.

LEMMA 2.21 (De-bordering IIXA).  Consider a polynomial f € Flx] which is
approzimated by IIXA of size s over F(e)[x]. Then there exists a IIXA (hence an
ARO) of size s which exactly computes f(x).

Proof. We will show that IIXA = IIXA € ARO. From Lemma 2.20, it follows
that IIXA C J](EA). However, we note that A = YA and it does not change the
size (as it can not increase the sparsity) (refer [24, Prop.A.12]). Therefore, the size
does not increase and further it is an ARO. Thus, the conclusion follows. 0

Next we show that polynomials approximated by ARO can be easily de-bordered.
To the best of our knowledge the following lemma was sketched in [46]; also implicitly
in [66).

LEMMA 2.22 (De-bordering ARO). Consider a polynomial f € Flx] which is
approximated by ARO of size s over F(e)[x]. Then, there exists an ARO of size s
which exactly computes f(x).

Proof. By definition, there exists a polynomial g = f 4 @) computable by width
w ARO over F(e)[x]. Note that w < s. In this proof, we will use the partial derivative
matrix. With respect to any-order-prefix y C x, consider the partial derivative matrix
N(g). Using Lemma 2.9 and 2.10, we know rkg(-)(N(g)) < w. This means determinant
of any (w+1) x (w+1) minor of N(g) is identically zero. One can see that the entries of
the minor are coefficients of monomials of g which are in Fle][z\y]. Thus, determinant
polynomial will remain zero even under the limit of ¢ = 0. Since, lim._,q g = f, each
minor (under limit) captures partial derivative matrix of f of corresponding rows and
columns. Thus, we get rkgp(N(f)) < w. Lemma 2.10 shows that there exists an ARO,
of width w over F, which ezactly computes f. ]

An obvious consequence of Lemma 2.17 and Lemma 2.22 is the following de-
bordering result.

LEMMA 2.23 (De-bordering AXA). Consider a polynomial f € F[x] which is
approximated by SAXA of size s over F(e)[x] and syntactic degree D. Then there
ezists an ARO of size O(sn?D?) which exactly computes f(x).
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2.6. Basic PIT tools. We dedicate this section to discuss some basic PIT tools
that we will require in the main section. We will start with the simplest one obtained
using PIT lemma of [111, 121, 38, 99].

LEMMA 2.24 (Trivial hitting set). For a class of n-variate, individual degree < d
polynomial f € Flz1,...,x,] there exists an explicit hitting set H C F™ of size d™ + 1.
In other words, there exists a point & € H such that f(a) £ 0 (if f #0).

The above result becomes interesting when n = O(1) as it yields a polynomial-
time explicit hitting set. For general n, we have better results for restricted circuits, for
example sparse circuits Y11, [2, 75] gave a map which reduces multivariate sparse poly-
nomial into univariate polynomial of small degree, while preserving the non-identity.
Since testing (low-degree) univariate polynomial is trivial, we get a simple PIT algo-
rithm for sparse polynomials.

Indeed if identity of sparse polynomial can be tested efficiently, product of sparse
polynomials IIXII can be tested efficiently. We formalise this in the following lemma.

LEMMA 2.25 ([104, Lemma 2.3]). For the class of n-variate, degree d polynomial
f € Flzy,...,z,] computable by IIXIL of size s, there exist an explicit hitting set of
size poly(s,d).

Finally, we state the best known PIT result for ARO, see [66, 60] for more details.

THEOREM 2.26 (ARO hitting set). For the class of d-degree n-variate polyno-

mials f € Flx] computable by size s ARO, there exists an explicit hitting set of size
SO(log log s)'

The following lemma is useful to construct hitting set for product of two circuit
classes when the hitting set of individual circuit is known.

LEMMA 2.27. Let Hi,Ho C F™ of size s1 and sy respectively be the hitting set
of the class of n-variate degree d polynomials computable by C1 and Co respectively.
Then, for the class of polynomials computable by Cy - Co there is an explicit hitting set
H of size s1 - 52 - O(d).

Proof. Let f = f1- fo € Cy - Cs such that f; € C; and f; € Cy. For each a; € Hq,
b; € M, define a ‘formal-sum’ evaluation point (over F[t]) ¢ := (c¢)1<e<n such that
c¢ := aze + 1t - bjg; where t is a formal variable. Collect these points, going over ¢, j, in
a set H. It can be seen, by shifting and scaling, that non-zeroness is preserved: there
exists ¢ € H such that 0 # f(c) € F[t] and deg f(¢) = O(d). Using trivial hitting set
from Lemma 2.24 we obtain the final hitting set H of size O(s1 - s2 - d). a

Remark 1. The above argument easily extends to circuit classes (C1/C1)-(C2/Cs),
which compute rationals of the form (g1/g2) - (h1/h2), where g; € C; and h; € Cy
(g2ha # 0).

Remark 2. The above lemma can be proved alternatively using hitting set gen-
erators. These generators are polynomial mapping that certify the non-zeroness of a
polynomial by composition. Refer [113, Section 4.1] for detailed discussion.

3. De-bordering depth-3 circuits. In this section we will discuss the proof of
de-bordering result (Theorem 1.1). Before moving on, we discuss the bloated model
on which we will induct.

DEFINITION 3.1 (Bloated model). A circuit C is defined to be in bloated class
Gen(k, s) over the ring of rational functions R(x), with parameter k and size s, if
it computes f € R(x) where f = 3,cpyTi, such that Ty = (U;/V;) - Pi/Qi, with
Ui, Vi, P;, Q; € Rlx] such that U;, V; € IIX and P;, Q; € XAX.
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708 Further, size(C) = ;¢ size(T3), and size(T;) = size(U;) + size(V;) + size(F;) +
709 size(Q;).

710 It is easy to see that size-s SFIIY lies in Gen(k, s), which will be our general
711 model of induction. Here is the main de-bordering theorem for depth-3 circuits.

712 THEOREM 3.2 (De-bordering SKITIY).  Let f(x) € Flz1,...,x,], such that f
713 can be computed by a SIS -circuit of size s. Then f is also computable by an ABP
714 (over F), of size sOkT),

-3
—_
ot

Proof. We will use DiDIL technique as discussed in subsection 1.4. The k =1
716 case is obvious, as II¥X = ITX and trivially it has a small ABP. Further, as discussed
before, k = 2 is already non-trivial. Eventually it involves de-bordering Gen(1, s); as

-~
-3

718 DiDIL technique reduces the k = 2 problem to Gen(1,s) and then we interpolate.

719 Base step: De-bordering Gen(1,s). Let g(x,e) € R(x,¢) be approximating f €
720  R(x); where R is a commutative ring. The specific ring that is needed for the proof
721  to work is defined later in the inductive step. Let d be the maximum of the syntactic
722 degree of the denominator and numerator of the bloated circuit computing g. Here is
723 the de-bordering result.

724 CramM 3.3. Gen(1,s) € ABP/ABP, of size O(sd*n), while the syntactic degree
725 blows up to O(nd?).

726 Proof. Using Definition 3.1,

o7 g(@,8) = (U(m,2)/V(@,2)) - P(,2)/Qw,2) = [(@) +2-S(@.e)

28 where U,V, P,Q € R(e)[x] such that U,V € IIX, P,Q € XAX. Let a1 := val.(U),
29 ag :=val.(V), by :=val.(P) and by := val.(Q). Extracting the maximum e-power, we
30 get

731 fHe-§=elamettizta). (0/‘7) ’ (P/Q) ’

732 where U,V, P,Q € R(¢)[x], and their valuations with respect to. € are zero i.e. lim._,q UI
733 exists and is non-zero (similarly for V,P, Q) Since, left side of the equation above is
734 well-defined at € = 0, it must happen that (a1 —ag) + (b1 —b2) > 0. If (a1 —a2) + (b1 —
735 bg) > 1, then f = 0, and we have trivially de-bordered. Therefore, we can assume
736 (a1 — a2) + (b — bz) = 0 which implies that

737 f=m0U/ lim V)- (lim P/ lim Q) € (Ix/1%) - (ARO/ARO) C ABP/ABP .

e—0

5 We have used the fact that U,V € IIX and P, Q € LAY of size at most s, over R(e)|x].

739  Further, by Lemma 2.21 and Lemma 2.23, we know that IIX = IIY and ¥AYX C ARO;
740 therefore f is computable by a ratio of two ABPs of size at most O(s - d*n) and the
741 degree gets blown up to atmost O(nd?). 0

712 Bloat out: Reducing XY to de-bordering Gen(k —1,-). Let fy := f be
743 an arbitrary polynomial in XIIY, approximated by go € F(g)[z], computed by
744 a depth-3 circuit C of size s over F(¢), i.e. go := fo + &+ Sp. Further, assume that
745 deg(fo) < do := d < s; we keep the parameter d separately, to optimize the complexity
746 later. Here, we also stress that one could think of homogeneous circuits and thus the
degree can be assumed to be the syntactic degree as well. Then, gy =: Zie[k‘] T;.0,
748 such that T; o is computable by a II¥-circuit of size at most s over F(e). Moreover,
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18 P. DUTTA, P. DWIVEDI AND N. SAXENA

define U; o :=T; 0 and V; o := P, o := Q; 0 = 1 as the base input case (of Gen(1,-) ).
As explained in the preliminaries, we do a safe division and derivation for reduction.

® homomorphism. To ensure invertibility and facilitate derivation, we define a homo-
morphism
@ : F(e)[x] — F(e)[x, 2], such that z; — z-2; +

where «; are random elements in F. Essentially, it suffices to ensure that ®(T; ¢)|x=0 =
T;0(a) # 0 for all 4 € [k]. We will be working with different ring R;(x), at i-th step
of induction, with Rg := F[z]/ (2?); here think of the z-variable as ‘cost-free’. Since
® is an invertible map, our target is to prove the size upper bound for ®( fy) which is
free of mod 2%, and thereby prove upper bound for f; by applying the &~ 1.

Divide and derive. Let v, o := val,(®(T};0)). Using the properties of the map we
know v; o > 0, for each ¢ € [k]. Further, with respect to e-valuation, assume that
(I)(TLQ) = Eai'o . ﬂo, where T 0 =: t ,0 +e- EZ o(x,Z,E) (tlo = ~Z 0|5 0) Note that
Vo = valz( ,0)- With respect to k, we assume min;¢ val ( 3.0) = Vg0 without loss
of generality, else we rearrange the indices to achieve the assumption. Then, we divide
®(go) by Tk70 and derive with respect to z:

k—1

O(fo)/Tro + - D(So)/Teo ="+ Y _ ®(T;0)/Tio [Divide]
=1

= 0, ((I)(fo)/Tk,O) + €0, ( (So)/Tr, 0) Zaz ( Ti0)/ Tk, 0) [Derive]

(3.1) = ’le ( T;0)/ T, 0) - dlog (‘I’(E,O)/Tkﬁ)

=401 .
Definability. Let Ry := F[z]/(z%), and dy := doy — vg o — 1. For i € [k — 1], define

Tin = (®(Ti0)/Tro) - dlog(®(T50) /o), and f1 == 0. (®(fo)/tr0) -
CLAM 3.4. g1 approzimates f1 correctly, i.e. lim._o g1 = f1, where g1 (respec-
tively f1) are well-defined over Rq(e,x) (respectively Ri(x)).

Proof. As we divide by the minimum valuation, by Lemma 2.19 we have
val.(®(T0)/Tro) >0 = ®(Tio)/Tho € F(z,e)[[z]] = Tia1 € F(x,e)[[2]] -

Note that val.(®(fo) + € - ®(So)) = val.(3 ;e P(Ti0)) = vko. Setting, e = 0,
implies that val,(®(fo)) > vi0 and hence, ®(fo)/Tk,0 € F(x,€)[[2]] (by Lemma 2.19).
Moreover, (®(fo)/Th.0)le=0 = ®(fo)/tr.0 € F(x)[[2]]. Combining these it follows that

®(fo)/teo € F()[[z]] = fi € F(@)[[=]].
Once we know that each Tj ; and f1 are well-defined power-series, we claim that
Eqn. (3 1) holds mod 2% ~vx0=1 Note that, ®(fo) +&-P(Sy) = Zze[k] O(T; ), holds

mod z?. Thus after dividing by the minimum valuation element (with z—valuation
Vk,0), it holds mod z90~Ur.0; finally after differentiation it must hold mod zd0—vr.o=1,

Further, as lim._,q Tk,o exists, we must have 0,(®(fy)/tk,0) = lime—og1; ie. g1
approximates f; correctly, over Rq (). d
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However, we stress that we also think of these as elements over F(x, z,¢), with
z-degree being ‘kept track of’ (which could be > d). All these different ‘lenses’ of
looking and computing will be important later.

Debordering using reduced fan-in model. To complete the proof we need to show
the following — (1) f1 € Gen(k —1,-), and (2) assuming we know Gen(k —1,-) has
small ABP/ABP, lift it exactly computes fo. To prove these claims, we will first show
that each T;; has small (IIX/IIX) - (XAX/3EAY)-circuit over Ry(x,e). As for the
second part we will interpolate on the bloated model. If the degree of z is carefully
controlled, the interpolation would be inexpensive. These two steps are essential in
the general reduction as well. Hence we will elaborate on them after showing the
fan-in reduction in general.

Inductive step (j-th step): Reducing Gen(k — j,-) to Gen(k — j — 1,-). Suppose,
we are at the j-th (j > 1) step. Our induction hypothesis assumes—
L > iep—j Tij =t g5, over Rj(w,¢€), such that g; approximates f; correctly,
where f; € R;(z), where R; := F[2]/(2%).
2. Here, 711'73‘ = (Ui,j/‘/i,j) . (P@J'/inj)? where

Ui;,Vi; € I¥ and P, ;,Q;; € ¥AY, each in Rj(e)[x] .

Each can be thought as an element in F(x, z,&) (F(x,<)[[2]] as well. As-
sume that the syntactic degree of each denominator and numerator of 7T; ; is
bounded by D;.
3. v ; ==val,(T;,;) >0, for i € [k — j]. Wlog, assume that min; v; ; = vk_; ;.
Moreover, U; j|.=o € F(¢)\{0} (similarly for V; ;).
We do like the 5 = 0-th step done above, without applying any new homomorphism.
Similar to that reduction, we divide and derive to reduce the fan-in further by 1.
Divide and Derive. Let Ty_; ; =: €33 - Ty_j j, where Ty_; ; =: (tp—_j; +&-tr_j;)
is not divisible by €. Divide g; =: f; +¢- 5, by Tk,j,j, to get:

k—j—1
FilTejy +€-Si/Thjj = €99 + > Tij/Tej;
=1
k—j—1
= 0; (fj/Tk—j,j) +e-0. <5j/Tk—j,j) = o8 (Ti,j/Tk—j,j)
=1
k—j—1
(3.2) = (Ti,j/kaj,j) - dlog (Ti,j/Tk—j,j)
=1
= gj+1-

Definability. Let Rji1 = F[2]/(z%+1), where d; ;1 := dj—vj_; ;—1. Fori € [k—j—1],
define

Tijy1 = (Ti,j/kaj,j) - dlog (Ti,j/kaj,j) ;and fip1 = 0.(f;/tk—j;) -

Cram 3.5 (Induction hypotheses). (i) g;4+1 (respectively fjy1) are well-defined
over Rjy1(x,€) (respectively , Rji1(x)).
(i1) gj+1 approximates fji1 correctly, i.e., im._,o gj41 = fijy1.

This manuscript is for review purposes only.
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20 P. DUTTA, P. DWIVEDI AND N. SAXENA

Proof. Remember, f; and T; ;’s are elements in F(x, z,¢) which also belong to
F(xz,e)[[z]]. After dividing by the minimum valuation, by similar argument as in
Claim 3.4, it follows that T; ;41 and f;41 are elements in F(x,z,¢e) [ F(x,¢e)[[2]],
proving the second part of induction-hypothesis-(2). In fact, trivially v; j41 > 0, for
i € [k — j — 1] proving induction-hypothesis-(3).

Similarly, Eqn. (3.2) holds over R,1(g,x), or equivalently mod z%+1; this is
because of the division by z-valuation of vj_;; and then differentiation, showing
induction-hypothesis-(1). So, Eqn. (3.2) being computed mod z%+! is indeed valid.
We also mention that using similar argument as in Claim 3.4, f;41 € F(x)[[z]].

Finally, as f;11 exists, it is obvious to see that lim._,¢ gj41 = fj+1- 0

Invertibility of 11X — circuits. In order to prove the second part of induction hypoth-
esis (3) we emphasize the role of dlog and its properties that make the arguments
to go through. The action of dlog on XAX results in polynomial blow-up in size
(Lemma 2.15).

What is the action on I1X? As dlog distributes the product additively, it suffices
to analyse dlog(X), and show that dlog(X) is in XAY with polynomial blow-up in size.
Simplifying T; j 1 gives:

T gy Uid Vimig Pij - Qujy
Th—j. Vij Uk—jj Qij-Pi-jj’
_Uijnn Pij-Qrjj
‘/;Z,j+1 Ql,g : Pk*j,j

Where we define U; j4q := 7%~ - Uy 5 - Vi, and Vj j41 := Vi - Up—j ;. Using
inductive hypothesis, this directly means:

Uij+ilz=0,Vijt1lz=0 € F(e) \ {0}.

This proves the second part of induction-hypothesis-(3). The P’s and @’s in the
equation above will be analysed along with the dlog action on 7; ;11 in the upcoming
claim.

The overall size blowup. Finally, we show the main step: how to use dlog which
is the crux of our reduction. We assume that at the j-th step, size(7; ;) < s; and by
assumption sy < s.

CramM 3.6 (Size blowup from DiDIL). Tij_1 € (IIX/IIX) (EAX/3XAE) over
Ri—1(x,€) of size sORT) It s computed as an element in F(e, x, z), with syntactic
degree (in x,z) dO"),

Proof. Steps j = 0 vs j > 0 are slightly different because of the homomorphism
®. However the main idea of using dlog and expand it as a power-series is the same,
which eventually shows that dlog(II¥) is in ¥AY with a controlled blowup.

For j = 0, we want to study dlog’s effect on ®(T})/Tk0. As dlog distributes
over product and thus it suffices to study dlog(¢), where ¢ € R(¢)[x]. However, by
the property of @, each ¢ must be of the form ¢ = A — 2B, where A € F(£)\{0} and
B € F(e)[x]. Using the power series expansion, we have the following, over Rq(x,¢):

(3.3) dlog(f) = ———— " — . ¥

Ham 2 ()

J=0
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Note,(B/A) and (—z-B/A)’ have a trivial A circuits, each of size O(s). For all j use
Lemma 2.12 on (B/A) - (—z - B/A)’ to obtain an equivalent SAX of size O(j - d - s).
Re-indexing gives us the final $AY circuit for dlog(f) of size O(d® - s). We use the
fact that d; < dy = d. Here the syntactic degree blowsup to O(d?).

For j > 0, the above equation holds over R;(z). However, as mentioned before,
the degree could be D, (possibly > d;) of the corresponding A and B. Thus, the
overall size after the power-series expansion would be O(D?dsize(ﬁ)) [here again we
use that d; < dJ.

Effect of dlog on ¥ AX is, naturally, more straightforward because it is closed under
differentiation, as shown in Lemma 2.15. Using Lemma 2.15, we obtain XAYX /SAY cir-
cuit for dlog(P; ;) of size O (D3 - s;). Similar claim can be made for dlog(Q; ;). Also,
dlog(U; ; - Vk—; ;) € > dlog(X), which could be computed using the above Equation.
Thus,

dlog(T; j/Th—;;) € dlog(ITS/TIE) + X dlog(TAY)
C AL 4+ ZHZAD/EAY = DAD/EAY .

Here, 1% means sum of 4-many expressions. The first containment is by linearization.
Express dlog(IIX/IIX) as a single X AY-expression of size O(D?dj s;), by summing up
the ¥ AX-expressions obtained from dlog(X). Next, there are 4-many YAX/EAY ex-
pressions of size O(DJZ s;) as there are 4-many P’s and )’s. Additionally, the syntactic
degree of each denominator and numerator of LAY /3AY grows up to O(D;). Finally,
we club IAYX/EAY expressions (4 of them) to express it as a single XAYX/EAY expres-
sion using Lemma 2.15, with size blowup of O(Djl-2s?). Finally, add the single ¥AY
expression of size O(D7s;), and degree O(dD;), to get O(s3D;°d) size representation.

Also, we need to multiply with Tj;/Ty_;; which is of the form (IIX/IIY) -
(XAE/ENY), where each Y¥AX is basically product of two XAY expressions of size s;
and syntantic degree D; and clubbed together, owing a blowup of O(Djsi). Hence,
multiplying this (IIX/IIX) - (EAX/XAX)-expression with the EAX/IAY expression
obtained from dlog-compuation, gives a size blowup of s;,1 := s;DjO(l)d.

As mentioned before, the main blowup of syntactic degree in the dlog compu-
tation could be O(dD;) and clearing expressions and multiplying the without-dlog
expression increases the syntactic degree only by a constant multiple. Therefore,
Dji1 :=0(dD;) = D; = d°U). Hence, sj11 =57 -d°0) = 5; < (sd)°U™). In
particular, sp_1 < s?*7); here we used that d < s. This calculation quantitatively
establishes induction-hypothesis-(2). d
Roadmap to trace back fy. The above claim established that gr_1 € Gen(1,-) and ap-
proximates fi_1 correctly. We also know that Gen(1,-) € ABP/ABP, from Claim 3.3.
Whence, gr—1 having sO™)_gize bloated-circuit implies: it can be computed as a
ratio of ABPs with size sO*7") . Dﬁ_l “n = so(’”k), and syntactic degree n - Dz_l =
d9®) . Now, we recursively ‘lift’ this quantity, via interpolation, to recover in order,
fru—2, fk—3,..., fo; which we originally wanted.

Interpolation: To integrate and limit. As mentioned above, we will interpolate
recursively. We know fr_1 = 0,(fr_2/t2,x—2) has a ABP/ABP circuit over F(zx, z),
i.e. each denominator and numerator is being computed in F[z, z], and size bounded

by Sp_1 := s?*7)_ Here is an important claim about the size of fy_» (we denote it
by Sk—2).
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Cram 3.7 (Tracing back one step). frx—o can be expressed as

dp—2—1

fie2 = Y (ABP/ABP) z',

=0

of size sOT) gnd syntactic degree d°®) .

Proof. Let the degree of both numerator and denominator of f;_; be bounded
by Dj,_, := d°®) then we know that it suffices to truncate the power series at z%-1.
Further let e1,ea < Dj_; be the valuation of fi_; with respect to z. If fi_; is a
power series in z, then e; > es. The size of the ABPs does not increase after dividing
by powers of z, since z and its powers is considered free (equivalent to computing over
F(z)[x]). Therefore, ABP/ABP can be expressed as Z?ﬁarl Cik—1- 2", by using the
inverse identity: 1/(1—2) =1+ ...+ 2% 17 mod z%-1. Here, each C; ;1 has an
ABP/ABP of size at most O(Sg_1 - Dj},_,>); for details see Lemma 2.6.

Once we get fr_1 = 2?25171 Ci r—17", definite-integration implies:

di—1
fe—2  fr—2 _ Z (Ci,k1> o mod sdk-1+1
lok—2 t2k—2]|,— — {

The final trick is to get fr—o2/t2 x—2|.=0 and ‘reach’ fy_a. As, fr_2/t2x—2 € F(z)[[2]],
substituting z = 0 yields an element in F(x). Recall the identity:

fo—2/top—2ls=0 = ;i_rf(l)(Tl,kf2/TQ,k72|z:0 + gf2k-2)
€ lim (F(e) - (EAX/ZAX) + g®2+-2)
e—0
Since, F(e) - (BAX/XAX) +e%24-2 C RAX/BAY, over F(e)(x). We know that the limit

exists and is ARO/ARO (C ABP/ABP) of syntactic degree d°*) and size sj,_; -d°*).
Thus, from the above equation, it follows:

dk,1 dk—l
fr—2/tok—2 = fr—2/ta k—2]-=0 + Z (Ci—1/1)- 2" € Z (ABP/ABP) - 2",
=1 i=0

of size dj_1 ~Sk,1D;€2_1 + sp_1-d°®) | and degree D+ dP®) | Lastly,

tor—s € lim (IIT/IIT) - (EAX/ZAT) C (IIS/IIX) - (ARO/ARO) .

Thus, it has size si_o, by previous Claims and degree bound Dj_o. Moreover, we
know that val,(t2 x—2) > v x—2 = di—2—dk—1 —1. Thus, multiply t5 ;_2 and truncate
it till di_o — 1. This gives us the blowup: size Sx_o = di_1 -Sk,lD;f_l + 81 - dO0)
and degree D) _, = D;_| + dO®)

So, we get: fr_o has E?iaz_l(ABP/ABP)zi of size Sj_o = sO*™) and degree
D}, =do®, ul

The z = 0-evaluation. To trace back further, we imitate the step as above; and get
fj one by one. But we first need a claim about the z = 0 evaluation of f;/ti—_; ;.
CramM 3.8 (For definite integration). f;/tk—;l.=0 € ARO/ARO C ABP/ABP

. k
of size sOKT),
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Proof. Note that, g;/Th_j; = Diclh—j) T;.;/Th—j; € F(x)[[z ¢]], as the valuation
with respect to z and ¢ is non-negative. Therefore,

(th_ij,j> - all—I}(l) Z ( ~Ti7]: )

2=0 i€lk—j] Tk*]d z=0
—lm Y <E—am,j.Uiu"Vka‘J.PM'Qkw‘)
=0 S Uk—jjVii Peji-Qij/ |l.—o
LAY SAY ARO
- Rt ST C .
€ lig _e[zk: ,] (F(g) E/\E) lim, (mz) = (ARO)
i€lk—j

Here we crucially used induction-hypothesis-(3) part: each U; ;,V;; at z = 0, is an
element in F(e). Also, we used that XAX is closed under constant-fold multiplication
(Lemma 2.12). Finally, we take the limit to conclude that ¥AX/XAY C ARO/ARO.

To show the ABP-size upper bound, let us denote the size(f;/tx—j jl.=0) = 57,

and the syntactic degree Dj. We claim that S} = O(sjo(k_]) ~D;4n). Because, we
have a sum of k — j many YAY/EAY expressions each of size s;; EAX is closed
under multiplication (Lemma 2.12) and ¥AY to ARO conversion introduces exponent
4 in the degree (Lemma 2.17). Each time the syntactic degree blowup is only a
constant multiple, thus D := d9*) (which is < s(®)). Therefore, S} = sOk=1)37" —
sOUKk=)7) = sO*™)  Here, we use the fact that max;e 1) j(k—j)77 = (k—1)7""!
(see Lemma 2.18). This finishes the proof. d

Size blowup. Suppose the ABP-size of f; is S;; thus we need to estimate Sy. We
do not need to eliminate division at each tracing-back-step (which we did to obtain
fx—2). Since once we have Z?igl(ABP/ABP) - 2% it is easy to integrate (with respect
to z) without any blowup as we already have all the ABP/ABP’s in hand (they are
z-free). The main size blowup (= 57) happens due to z = 0 computation which we

calculated above (Claim 3.8). Thus, the final recurrence is S; = S; 1 +S}. This gives
So = s which is the size of O(f), over F(z,x), being computed as an ABP/ABP.

Using the degree bound on z, eliminate the division as in the proof of Claim 3.7
to obtain an e-free ABP over F[z, z] computing ®(f). Apply the map ®~! to obtain

the final ABP of size sO*7") computing the polynomial f. O

Remark. In general, we proved that if f € Gen(k, s), then it can be computed by an
ABP of size sO*7").

4. Black-box PIT for border depth-3 circuits. We divide the section into
two parts. First subsection deals with proving Theorem 1.2, while the second subsec-
tion deals with a better hitting sets in the log-variate regime.

4.1. Quasi-derandomizing Y[*IIIY circuits. Integration step of DiDIL is im-
portant to give any meaningful upper bound of circuit complexity. However, a hitting
set construction demands less—each inductive step of fan-in reduction only needs to
preserve non-zeroness. Eventually, we exploit this to give an efficient hitting set con-

struction for XIKIIIY, and in the process of reducing the top fan-in analyse the bloated
model Gen(k,-).
THEOREM 4.1 (Hitting set for SIFIIX).  There exists an explicit sOK7" 1oglogs)

time hitting set for LIFIIIY-circuits of size s. For constant k, the algorithm runs in
quasi-polynomial time.
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Proof. The basic fan-in reduction strategy is same as in section 3. Let fo := f
be an arbitrary polynomial in X*ITIY, approximated by go € F(e)[z], computed by
a depth-3 circuit C of size s over F(e), i.e. go := fo + - So. Further, assume that
deg(fo) < dp :==d < s. Let go =: Zie[k] T; 0, such that T; o is computable by a
[I¥-circuit of size at most s over F(g). As before, define Rg := F[z]/(z%). Thus,
fo+e - So= Zie[k] T;.0, holds over Ry(x,¢).

Define U; o := T and Vjo := P;o := Q0 = 1 to set the input instance of
Gen(k,s). Of course, we assume that each T; ¢ # 0 (otherwise it is a smaller fan-in
than k).

The homomorphism ®. To ensure invertiblity and facilitate derivation, we define the
same ® as in section 3, i.e. @ : F(¢)[x] — F(e)[x, 2] such that z; — 2z - z; + «;. For
the upper bound proof, we took «; € F to be random; but for the PIT purpose,
we cannot work with a random shift. The purpose of shifting was to ensure the
invertibility, i.e., F(¢) 3 T; o(a) # 0; that is easy to ensure since £(y, y?,...,y") # 0,
for any linear polynomial ¢, over any field. Since, deg(]]; Ti,0) < s, there exists an
i € [s] such that a = (4,42, ...,4") hits T} ¢! In the proof, we will work with every such
a (s-many), and for the right value, non-zeroness will be preserved, which suffices.

0-th step: Reduction from k to k—1. We will use the same notation as in section 3.
We know that g; approximates fi correctly over Ri(x,e). Rewriting the same, we
have
(4.1)
fo+€'So = Z T%,o, OVGI‘R()(:E,&S) — f1 -‘1-5'51 = Z TIL'71 , over Rl(;c,s) .
1€[k] 1€[k—1]

Here, define Tj, = (®(Ti0)/Tko) - dlog(®(T;0)/Tro), for i € [k — 1] and f; =
0. (®(fo)/tk,0), same as before. Also, we will consider T; 1 as an element of F(x, z,¢)
and keep track of deg(z).

The “iff” condition. Note that the equality in (4.1) over Ry (e, x) is only “one-sided”.
Whereas, to reduce the problem of identity testing to smaller fan-in case, we need a
necessary and sufficient condition: If fo # 0, we would like to claim that f; # 0 (over
Ri(x)). However, it may not be directly true because of the loss of z-free terms of fo,
due to differentiation. Note that fi # 0 implies val,(f1) < d =: d;. Further, f; =0,
over Ry(x), implies—

1. Either ®(fo)/tx,0 is z-free. This implies ®(fo)/tro € F(x), which further
implies it is in [F, because z-free implies a-free, by substituting z = 0, by the
definition of ®. Also, note that fy,tx0 # 0 implies ®(fo)/tr 0 is a nonzero
element in F. Thus, it suffices to check whether ®(fy)|.—0 = fo() is non-zero
or not.

2. Or 0,(®(fo)/tko) = 2% - p where p € F(z,x) s.t. val,(p) > 0. By simple
power series expansion, one can conclude that p € F(z)[[z]] (Lemma 2.19).
Hence,

O(fo)/teo = 2"+ - p,wherep € F(z)[[z] = val.(®(fo)) > d,

a contradiction. Here we used the simple fact that differentiation decreases
the valuation by 1.
Conversely, it is obvious that fy = 0 implies f; = 0. Thus, we have proved the
following:

fo #0over Flz] <= f1 #0over Ri(x), or 0% ®(fo)|,—0 €F.
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Recall, Claim 3.6 shows that T; ; € (IIX/IIX) (XAX/XAY) with a polynomial blowup.
Therefore, subject to z = 0 test, we have reduced the identity testing problem to k—1.
We will recurse over this until we reach k = 1.
Induction step. Assume that we are at the end of j-th step (j > 1). Our inductive
hypothesis assumes the following invariants:
L Yicoy Tij = fi+e-Sj over Rj(e, ®), where T; ; # 0 and R; := F[2]/(2%).
2. Each n,j = (Ui,j/‘/z‘,j)'(Pi,j/Qi,j) where Ui,j, Vvi,j € II¥ and Pi7j7 QiJ‘ € XAX.
3. val,(T; ;) > 0, for all ¢ € [k — j]. Moreover, U; j|.=0 € F(¢)\{0} (similarly
Vii)-
4. fo # 0iff: f; # 0 over Rj(x), or there exists 1 < ¢ < j — 1 such that
fi/tk—iilz=0 # 0, over F(x)
Reducing the problem to k—j—1. We will follow the j = 0 case, without applying
any homomorphism. Again, this reduction step is exactly the same as before, which
yields: fj +¢e-5; = > ey Tigs over Rj(x,e) =

(4.2) fiwiteSp= ) Tiju, over Rj(.e).
i€lk—j—1]

Here, T} j41 = (Ti,j/Tk,j’j) -dlog(T;,;/Tk—j,;), and fjqy1:= 0.(f;/tk—j;), as before.
It remains to show that, all the invariants assumed are still satisfied for j + 1.

The first 3 invariants are already shown in section 3. The 4-th invariant is the iff

condition to be shown below.

The “iff” condition in the induction. The above (4.2) reduces k — j-summands to

k —j — 1. But we want an ‘iff’ condition to efficiently reduce the identity testing. If

fij+1 # 0, then val,(fj41) < djy1. Further, fj11 =0, over Rj;1(x) implies—

1. Either f;/ti—; ; is z-free, i.e. fj/tx—;; € F(x). Now, if indeed fy # 0, then
ty—;; as well as f; must be non-zero over F(z,x), by induction hypothe-
sis (assuming they are non-zero over R;(x)). We will eventually show that
fj/tk—jjl:=0 has a small ARO/ARO circuit; which helps us to construct a
quasi-polynomial size hitting set using Theorem 2.26.

2. Or 9.(f;/tk—j;) = z%+1 - p, where p € F(z,z) s.t. val.(p) > 0. By sim-
ple power series expansion, one concludes that p € F(x)[[2]] (Lemma 2.19).
Hence,

tL € 2Bt 5 where p € F(z)[[2]] = val.(f;) > d;
k—j,j
= f; =0, over R;(x).

Conversely, f; = 0, over R;(x), implies val.(f;/Tk_;;) > dj — vh_j; =
val. (0. (fj/Tk—j;)) = dj —vk—j; — 1 =dj11 = 0:(fj/Tk-j,;) =0, over Rjt1(e, ).
Fixing € = 0 we deduce f; 11 = 0.(f;/ti—;;) = 0.

Thus, we have proved that f; # 0 over R;(x) iff

fj+1 %0 over Rj+1(:l$) ,or, 0# (fj/tk,j,j)lzzo S F(:B) .

This concludes the proof of the 4-th invariant.

Note: In the expression above f;/ty_; ; may be undefined at z = 0. However, we
keep track of z—degree to show that it is bounded in both numerator and denominator,
as in Claim 3.6 . Later when we show that (f;/tx—; ;)|-=0 € ABP/ABP, we use the
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degree bound to interpolate and cancel out z—power to get a ratio which is well-defined
at z =0.

Constructing the hitting set. The above discussion has reduced the problem
of testing ®(f) to testing fr—1 or fj/tk—; ilz=0, for j € [k — 2]. We know that
fr—1 € (IX/IY) - (ARO/ARO), of size sO*T) from Claim 3.6. We obtain the
hitting set of IIX from Lemma 2.25, and for ¥AY we obtain the hitting set from
Theorem 2.26 (due to Lemma 2.17). Finally we combine the two hitting sets using
Lemma 2.27 and use the fact that the syntactic degree is bounded by s°®*) to obtain
a hitting set Hy_1 of size sO(kT" loglog s)

However, it remains to show— (1) efficient hitting set for f;/tx—; ;|,=0, for j €
[k — 2], and most importantly (2) how to translate these hitting sets to that of ®(f).

Recall: Claim 3.8 shows that fi/tx—; jl.—0 € ARO/ARO, of size sOT) (over
F(x)). Thus, it has a hitting set H; of size sO(kT loglogs) for all j € [k — 2] (Theo-
rem 2.26).

To translate the hitting set, we need a small property which will bridge the gap
of lifting the hitting set to fy.

CramM 4.2 (Fix @). For b € ", if the following two things hold: (i) fj1i|e=b #
0, over Rjt1, and (i) val,(Ti—; jlz=b) = Vk—j j, then fjlz=p # 0, over R;.

Proof. Suppose the hypothesis holds, and f;j|z=p = 0, over R;. Then,

valz = fj > dj — Vg—j,j — valz(ﬁz = fj > dj+1.
Te—jji ) la=b Ti—jji ) la=b

The last condition implies that 8. (f;/Tk—_jj)|le=s = 0, over Rjy1(x). Fixing ¢ = 0
we deduce fji1|z=b = 0. This is a contradiction! 0

Finally, we have already shown in section 3 that Tj,_; ; € (IIX/IIX)- (BAY/SAY),
and t_; ; € (IIE/IIX) - (ARO/ARO), of size s which is similar to fj_;.

Joining the dots: The final hitting set. We now have all the ingredients to construct
the hitting set for ®(fy). We know Hj_1 works for fr_; (as well as t9 2, because
they both are of the same size and belong to (IIX/IIY) - (ARO/ARO)). This lifts
to fr_o. But from the 4-th invariant, we know that Hy_o works for the z = 0
part. Eventually, lifting this using Claim 4.2, the final hitting set (in x) will be
H = U, ep—1 Mj- We remark that we do not need extra hitting set for each t,_;,;,
because it is already covered by Hy_1. We have also kept track of deg(z) which is
bounded by s°*). We use a trivial hitting set for z which does not change the size.
Thus, we have successfully constructed a sOkT" loglog s)_time hitting set for SFII¥.0

Remark. The set H constructed is a sO*7"1081085)_time hitting set for Gen(k, s), over
fields of large characteristic.

4.2. Border PIT for log-variate depth-3 circuits. In this section, we prove
Theorem 1.3. This proof is dependent on adapting and extending proof of Forbes,
Ghosh, and Saxena [49], by showing that there is a poly(s)-time hitting set for log-
variate Y AX-circuits.

THEOREM 4.3 (Derandomizing log-variate XAY). There is a poly(s)-time hitting
set for n = O(log s) variate XAX-circuits of size s.
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Proof sketch. Let ¢ = f + ¢ - @, such that g € XAX, over F(e), approximates
f € TAX. The idea is the same as [49]— (1) dimension of the space generated by all
partial derivatives of f is poly(s,d), (2) low partial derivative space implies low cone-
size monomials, (3) we can extract low cone-size monomials efficiently, (4) number of
low cone-size monomials is at most poly(sd)-many.

We remark that (2) is direct from [47, Corollary 4.14] (with origins in [50]); see
Theorem 2.2. (4) is also directly taken from [49, Lemma 5] once we assume (1); for
the full statement we refer to Lemma 2.3.

To show (1), we know that g has poly(s, d)-dimensional partial-derivative space
over F(e). Denote

VE:—<ag|a<oo> 7andV:—<af|a<c>o>.
Ox? F(e) Ox° F

Consider the matrix M., where we index the rows by 0za, while columns are indexed
by monomials in the support of g, and the entries are the value of partial derivative
operator. Suppose, dim(V.) =: r < poly(s,d) (because g has a size-s XAX circuit).
That means, all (r 4+ 1) polynomials amff, are linearly dependent. In other words,
the determinant of any (r + 1) x (r + 1) minor of M, is 0. Note that lim._,o M. =
M, the corresponding partial-derivative matrix for f. Crucially, the zeroness of the
determinant of any (r + 1) x (r + 1) minor of M. translates to the corresponding
(r4+1) x (r +1) submatrix of M as well (one can also think of det as a “continuous”
function, yielding this property). In particular, dim(V) < r < poly(s, d).

Finally, to show (3), we note that the coefficient extraction lemma [49, Lemma 4]
also holds over F(g). Thus, given the circuit of g, we can decide whether the coefficient
of m =: % is zero or not, in poly(cs(m), s,d)-time; see Lemma 2.4. Note: the
coefficient is an arbitrary element in F(e); however we are only interested in its non-
zeroness, which is merely ‘unit-cost’ for us.

We only extract monomials with cone-size poly(s, d) (property (2)) and there are
only poly(s,d) many such monomials. Therefore, we have a poly(s)-time hitting set
for XA, 0

Once we have Theorem 4.3, we argue that this polynomial-time hitting set can be
used to give a poly-time hitting set for L[FITIY. We restate Theorem 1.3 with proper
complexity below.

THEOREM 4.4 (Efficient hitting set for log-variate SKITIX).  There exists an
explicit sO™) _time hitting set for n = O(log s) variate, size-s, SFIIY circuits.

Proof sketch. We proceed similarly as in subsection 4.1, with same notations. The
reduction and branching out (or conditions) remains exactly the same; in the end, we
get that fi_1 € (IIX/IIX) - (ARO/ARO). Crucially, observe that this ARO is not a
generic poly-sized ARO; these AROs are de-bordered log-variate ¥AX circuits. From
Theorem 4.3, we know that there is a sOT) _time hitting set (because of the size
blowup, as seen in section 3). Combining this hitting set with II¥-hitting set is easy,
by Lemma 2.27.

Moreover, tj_; ; are also of the form (IIX/IIX) - (ARO/ARO), where again these
AROs are de-bordered log-variate SAY circuits and sO*7")-time hitting set exists.
Therefore, take the union of the hitting sets (as before), each of size sOG™) " This
gives the final hitting set which is again sOT) _time constructible. 0

This manuscript is for review purposes only.



1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156

1157

1158

1159
1160
1161
1162
1163
1164
1165

1166
1167
1168
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

1180

1181
1182
1183
1184
1185

28 P. DUTTA, P. DWIVEDI AND N. SAXENA

5. Gentle leap into depth-4: De-bordering X[*IIIXA circuits. The main
content of this section is to sketch the de-bordering theorem for LIFITIZA. We intend
to extend DiDIL and induct on a slightly more general bloated model, as sketched in
subsection 1.4.

THEOREM 5.1 (XHIIIXA upper bound). Let f(x) € Flz,...,x,], such that f
can be computed by a SIKIIIXA-circuit of size s. Then f is also computable by an
ABP (over F), of size SOk

Proof sketch. We will go through the proof of Theorem 3.2 (see section 3), while
reusing the notations, and point out the important changes for the DiDIL technique to
work on this more general bloated-model (IIZA/IIXA) - (XAXA/ZAXA). As earlier,
we induct on the top fan-in parameter k.

Base case. The analysis remains unchanged. We merely have to de-border IIXA
and YAXA for the numerator and the denominator separately using Lemma 2.21 and
Lemma 2.23. Then use the product lemma (Lemma 2.20) to conclude:

(IIZA/IIZA) - (EAEZA/EAEA) C (IEA/IIZA) - (ARO/ARO) C ABP/ABP.

Reducing the problem to k—1. To facilitate DiDIL, we use the same ® : F(e)[x] —
F(e)[x, 2]; since a; are random, the bottom YA circuits are ‘invertible’ (mod 2%). For
the same reasons as Theorem 3.2, it suffices to upper bound the size of ®(f).

We will apply again divide and derive to reduce the fan-in step by step. We just
need to understand 7; ;. Similar to Claim 3.6, we claim the following.

CLAIM 5.2. Ty k-1 € 1ren - 2R, an element in the ring Riy—1(x,¢€), of size at

O(kT*)

most s

Proof. The main part is to show that dlog acts on IIXA circuits “well”. To
elaborate, we note that (3.3) can be written for XA circuits, giving a XAXA circuit.
To elaborate, let A—z-B =: h € XA, such that 0 # A € F(e). Therefore, over Ry(x),
we have

9. (z- B) 9. (z-B) = /2B
dos(h) =~ g = ()
7=0

Once we use the fact that XAXA is closed under multiplication (Lemma 2.12), it
readily follows that dlog(IIXA) € LAXA. Moreover, the derivative of LAXA is again
a YAXA circuit, due to easy interpolation (Lemma 2.15). Following the same proof
arguments (as for Theorem 3.2), we can establish the above claim.

It was already remarked that properties shown in subsection 2.3 hold for YAXA
circuits as well. Therefore, the rest of the calculations remain unchanged, and the
size claim holds. ]

Interpolation & Definite integration. It is again not hard to see that

fj/tk_j7j|zzo € liII(l) E F(e) - (EAXA/EZAXA) € ARO/ARO C ABP/ABP .
e—
i€[k—j]

Here, we have used the facts that 3AXA is closed under multiplication (Lemma 2.12)
and YAYXA C ARO (Lemma 2.23). The remaining steps also follow similarly once we
have the ABP/ABP form of de-bordered expressions.

We remark that in all the steps the size and degree claims remain the same and
hence the final size of the circuit for ®(f) immediately follows. d
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6. Black-box PIT for border depth-4 circuits. The DiDIL-paradigm that
works for depth-3 circuits can be used to give hitting set for border depth-4 SIFITIXIIL]
and SFITIXA circuits. But before that, we have to argue that we have efficient hitting
set for the wedge model XAXIIN], which we discuss in the next subsection. Later, we
will sketch the proof of the hitting set for border of bounded depth-4 circuits.

6.1. Efficient hitting set for YAXIIP]. Forbes [48] gave quasipolynomial-time
black-box PIT for SAXIIN; using a rank-based method. We will make some small
observations to extend the same for SAXIIF] as well. We encourage interested readers
to refer to [48] for details. First, we need some definitions and properties.

Shifted Partial Derivative measure <0<, is a linear operator first introduced
in [72, 63] as:

mgagm(g) 1= {xOpo (g)}degwcgz,degmbgm .
It was shown in [48] that the rank of shifted partial derivatives of a polynomial
computed by BAXIIP is small. We state the result formally in the next lemma.
Consider the fractional field R := F(e).

LEMMA 6.1 (Measure upper bound). Let g(e, ) € R[z1,...,x,] be computable
by SAXIY! circuit of size s. Then

rkspanz=‘8<.,(g) < s-m

n+ (0 —1)m+/¢
6—1)m+¢ )
Further it was observed in [48] that, the rank can be lower bounded using the

Trailing Monomial (ref [37, Section 2]). Under any monomial ordering, the trailing
monomial of g denoted by TM(g) is the smallest monomial in the set support(g) :=

{x® : coefgza(g) # 0}.
PROPOSITION 6.2 (Measure the trailing monomial). Consider ¢ € R[x]. For
any £;m >0,

rkspanz=‘d<,,(g) > rkspanz=‘d<,, (TM(g)).

For fields of characteristic zero, a lower bound on a monomial was obtained.

LEMMA 6.3 (Monomial lower bound). Consider a monomial ® € R[z1,. .., Ty].
Then,
-—m-+/
rkspan (mSZBSm (:c“)) > (Z) (77 ¢ )

where 1 := |support (x%)].

In [48] the above results were combined to show that the trailing monomial of
polynomials computed by SAXIIP! circuits have logarithmically small support size.
Using the same idea we show that if such a polynomial approximates f, then the
support of TM(f) is also small. We formalize this in the next lemma.

LEMMA 6.4 (Trailing monomial support). Let g(e,x) € R[z1,...,2,] be com-
putable by a SAXIIO circuit of size s such that g = f + ¢ - Q where f € Flx] and
Q € Fle,x]. Let n := |support(TM(f))|. Then n = O(dlogs).

Proof. Let ® := TM(f) and S := {i|a; # 0}. Define a substitution map p
such that x; — y; for i € S and x; — 0 for i ¢ S. It is easy to observe that
TM(p(f)) = p(TM(f)) = y*. Using Lemma 6.1 we know:

77+(5—1)m—|—€) _.R

rkry = O<m(p(g)) < s5-m- ( (6 —1)m+1¢
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To obtain the upper bound for p(f) we use the following claim.
CLAIM 6.5. rkry=‘d<,(p(f)) < R.

Proof. Define the coefficient matriz N(p(g)) with respect to y=*d<,.(p(g)) as
follows: the rows are indexed by the operators y=% Oy=mi, while the columns are
indexed by the terms present in p(g); and the entries are the respective operator-
action on the respective term in p(g). Note that rkp)N(p(g)) < R. Similarly define
N(p(f)) with respect to y<‘@<,,(p(f)), then it suffices to show that rkp N (p(f)) < R.

For any r > R, let N(p(g)) be a r x r sub-matrix of N(p(g)). The rank bound
ensures: detN(p(g)) = 0. This will remain true under the limit e = 0; thus,
det(N'(p(f))) = 0.

Since r > R was arbitrary and linear dependence is preserved, we deduce:

rke N (p(f)) < R

For lower bound, recall y® = TM(p(f)). Then, by Proposition 6.2 and Lemma 6.3,
we get:

6.1) w00 = (1) ("),

m

Comparing Claim 6.5 and (6.1) we get:

1 n n—m-+4 n+ (@0 —1)m+/¢
() (TR
For £ := (6—1)(n+(6—1)m) and m := |n/e3§], [48, Lem.A.6] showed n < O(Jlog s).0

The existence of a small support monomial in a polynomial which is being ap-
proximated, is a structural result which will help in constructing a hitting set for this
larger class. The idea is to use a map that reduces the number of variables to the size
of the support of the trailing monomial, and then invoke Lemma 2.24.

THEOREM 6.6 (Hitting set for SAXIIO).  For the class of n-variate, degree d
polynomials approximated by SASIIE! circuits of size s, there is an explicit hitting

set H CF™ of size s2001985) 4 e.. for every such nonzero polynomial f there exists an
a € H for which f(a) # 0.

Proof. Let g(e,x) € R[x1,...,z,] be computable by a SAXIIY circuit of size s
such that g =: f+¢-Q, where f € F[z] and @ € Fle, ]. Then Lemma 6.4 shows that
there exists a monomial % of f such that n := |support(x®)| = O(Jlog s).

Let S € ([Z]). Define a substitution map pg such that x; — y; for i € S and
x; — 0 for ¢ € S. Note that, under this substitution non-zeroness of f is preserved
for some S; because monomials of support S D support(x?®) will survive for instance.
Essentially pg(f) is an n-variate degree-d polynomial, for which Lemma 2.24 gives a
trivial hitting set of size O(d"). Therefore, with respect to S we get a hitting set Hg
of size O(d"). To finish, we do this for all such S, to obtain the final hitting set H of
size:

(”) 0 (d") < O((nd)").

n O

Remark 6.7. Unlike the PIT result for the border of depth 3 circuits, we obtained
this result without de-bordering the circuit at all.
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6.2. DiDIL on depth-4 models. The DiDIL-paradigm along with the branching
idea, in subsection 4.1, can be used to give hitting set for border depth-4 SIFITIXIIL]
and LIFITIXA circuits. For brevity, we denote these two types of (non-border) depth-4
circuits by SIFITIEY circuits where YT € {A,TI%}. We will give a separate hitting set
for the border of each class, while analysing them together.

THEOREM 6.8 (Hitting set for bounded border depth-4). There exists an ex-
plicit Ok loglogs) (respectively sOO°kT 1085 )_time hitting set for SIFITIXA (respec-
tively SIKITIXTIO! )-circuits of size s.

Proof sketch. We will again follow the same notation as subsection 4.1. Let g :=
Zie[k] T;.0 = fo + &Sp such that go is computable by SFIINY over F(e). As earlier,
we will instead work with a bloated model that preserves the structure when applying
the DiDIL technique. The bloated model we consider is

SFIIST/TIEY) (EAZY/SARY) .

Using the hitting set of product of sparse polynomials (refer [75]), we can obtain
a point & = (ay,...,a,) € F(e)™ such that IIXT evaluated at « is non-zero. This
evaluation point helps in maintaining its invertibility. We capture the non-zeroness
in a 1-1 invertible homomorphism @ : F(e)[z] — F(e)[z, 2] such that z; — z - x; + ;.
The invertibility of the map implies: fo # 0 if and only if ®(fy) # 0.

The next steps are essentially the same: reduce k to the bloated & — 1, and
inductively to the bloated k = 1 case. There will be ‘branches’ and for each branch
we will give efficient hitting sets; taking their union will give the final hitting set.

By Divide and Derive, we will eventually show that: fy # 0 < fix_1 #
Oover R;(x), or there exists 1 < ¢ < k — 2 such that (fi/tx—i i|.=0 # 0, over F(x)) .
Similar to Claim 5.2 we can show that

Ty oy € ([ISY/IEY) (BAST/SALY),

over Ry_1(x,¢). The trick is again to use dlog and show that dlog(IIXY) € EAXTY.
However the size blowup behaves slightly differently. To prove it formally, we need the
following claim that upper bounds the blow-up from applying the map v on XII1%.

CLAIM 6.9. Let g € XMV then U(g) € XMV of size at most 3° - size(g), when
number of variables n > 4.

Proof sketch. Let &® be a monomial of degree ¢, such that ), a; < 6. Then
the number of monomials produced by ¥ can be upper bounded by the AM-GM
inequality:

H(ai +1) < <Zic:;+n)" < (1468/n)"

As 6/n — 0, we have (1 +0/n)" — €. As e < 3, the upper bound follows. 0
We claim that T j—; is in the bloated model with reasonable blowup in size.
CLAIM 6.10. For SIFIIXA, respectively SFTILIIO, we have

T . XA YADA rosvectivel 11l SAXII]
L1 S\ Isa ) T\ Sasa ) TP Y\ Ismm) SASIIN )

over Ry_1(x,e) of size sOKT) pespectively (535)O(k7k).
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Proof sketch. We will follow the line of arguments from the proof of Claim 5.2
and explain it for one step i.e. over Rq(x, ). After applying the map, let A—z-B =
h € £Y, such that A € F(e). Therefore, over Rq(x), we have

di—1 j
dlog(h) = M -3 (AB> :

j=0
Here, use the fact that YAXY is closed under multiplication. For XAXA circuits, the
calculations remains the same as in section 5. However, for SAXIIP circuits, note
that as h is shifted, size(B) is no longer poly(s); but it is at most 3° - s, see Claim 6.9.
Therefore, the claim follows. ]

Eventually, one can show (using Lemma 2.20 to distribute):

fro1 € (IST/IEY) - (SASY/EASY) € (IISY/IEY) - (BAST/SASY) .

When T = A, we know XAXA C ARO and thus this has a hitting set of size
sOkT" loglog ) (Theorem 2.26). We also know hitting set for IIXA (Lemma 2.25).
Combining them using Lemma 2.27, we have a quasipolynomial-time hitting set of
size SO(k?’“ loglog s)

As seen before, we also need to understand the evaluation at z = 0. By a similar

argument, it will follow that

. o i . CIAXY .
filti-jjlz=0 € lim E{; ’] F(e) - (SALY/EAXT) C TAST
i€lk—j

When T = A, we can de-border and this can be shown to be an ARO. Thus, in
that case f;/tr—j ;|l.=0 € ARO/ARO, where hitting set is known (similarly as before)
giving hitting set for each additional check in each step. Once we have hitting set
for each step, we can take a union (similar to Claim 4.2) to finally give the desired
hitting set.

Unfortunately, we do not know the size complexity upper bound of YAXY, when
T = 1119, as the duality trick cannot be directly applied. However, as we know a
hitting set for SAXII], from Theorem 6.6; we will use it to get the final hitting
set. To see why this works, note that we need to hit fr_1 € (HEH[‘;]/HZH[‘S]) .

YAXIILI /S AXTIN], We know hitting sets for both IIXTIP! (Lemma 2.25) and S AXTILE]
(Theorem 6.6), thus combining them is easy using Lemma 2.27.

To get the final estimate, define s’ := so(5k7k); which signifies the size blow-up due
to DiDIL. Next, the hitting set Hy_; for fr_1 has size (nd)OC®les) < gO@*k7" logs)
We know that a similar bound also holds for each branch. Taking their union gives
the final hitting set of the size as claimed. ]

7. Conclusion & future direction. This work introduces the DiDIL-technique
and successfully de-borders as well as derandomizes PIT for ZIFIIIY. Further we
extend this to subclasses of depth-4 as well. This opens a variety of questions which
would enrich border-complexity theory.

1. Does SIIIIY C YIIX, or SIFIIIY C VF, i.e. does it have small formulas?
2. Can we show that VBP # SITIY? !

Very recently, Dutta and Saxena [40] showed an exponential gap between the two classes.
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3. Can we improve the current hitting set of s@*P(k)loglogs {4 gO(poly(k)loglogs)
or even a poly(s)-time hitting set? The current technique seems to blow-up
the exponent.

4. Can we de-border ¥ A X181, or SIFITIXIIN], for constant k and §? Note that
we already have partially derandomized PIT for the class (Theorem 6.8).

5. Can we show that X¥1 A X C ¥ A Z for constant £? To show that polynomi-
als of constant border-Waring rank have waring rank which is polynomially
bounded by the degree and the number of variables.

6. Can we de-border LITIXAR? ie. the bottom layer has bi-variate polyno-
mials.

De-bordering vs. Derandomization. In this work, we have successfully de-bordered
and (quasi)-derandomized LIKITIY. Here, we remark that de-bordering did not di-
rectly give us a hitting set, since the de-bordering result was more general than the
models for which explicit hitting sets are known. However, we were still able to do
it because of the DiDIL-technique. Moreover, while extending this to depth-4, we
could quasi-derandomize LIFITIXTIN) because eventually hitting set for ¥ A XI11) is
known. However we could not de-border X A XIII%], because the duality-trick fails to
give an ARO. This whole paradigm suggests that de-bordering may be harder than
derandomization.
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